Safe Robot Control

Combining learning and model predictive control

Andrea Del Prete, University of Trento

Why Safety?

Today: Human-Robot Collaboration in Industry

<P E) or
» ~ ~- . .

https://Www.therobotrebort.com/ manufacturing/ria-osha-robot-safety/

Why Safety?

Tomorrow: Black-box Data-Driven Control Policies

N

B

Zitkovich, Brianna, et al. "Rt-2: Vision-language-action models transfer web knowledge to robotic control."
Conference on Robot Learning. PMLR, 2023.

What is Safety?

ISO/TS 15066 (2016, revised in 2022)

MODE 1 - Safety-rated monitored stop

@
}\ij

MODE 3 - Speed and separation monitoring MODE 4 - Power and force limiting

STOP,

Emeric, C., Geoffroy, D., & Paul-Eric, D. (2020). Development of a new robotic programming support system for
operators. Procedia Manufacturing, 51(2019), 73-80. https://doi.org/10.1016/j.promfg.2020.10.012

Safety Definition

What is safety?

- - - ——— —
| 1

e Jomt angle, veIOC|ty, torque Ilmlts 1‘ Easy
]

| . .

| ¢ Collision avoidance

| Self-collision

.l P g0ou) <0
|
. Statlc obstacles (e. table waII {
|+ Static obstacles (e.g., table, w
. Dynamlc obstacles (eg humans other robots)
* Collision management:

e Contact shall not result in pain or injury

State of the art

Safety Guarantees
State of the art

 Main tools to ensure safety:
* Control-Invariant Sets (CIS)
e Control Barrier Functions (CBF)
 Back-up Policies (BUP)
* Very similar tools
 CBF and BUP implicitly define a CIS

 We focus on CIS in the rest of the presentation

Control Invariant Sets

Definitions

e Constrained discrete-time dynamical system:

7 is a control invariant set| €% |Once x is in 7/, it can remain in 7.

VA

Safety via Control Invariant Sets

How does it work?

» Suppose we know a CIS 7.
» Suppose 7 is a subset of X (feasible state space).

« Suppose we start in 7.

e Then:
e we can remain in 7" forever;

« hence, we can remain in & forever:

* hence, we ensure safety.

Recursive Feasibility
Model Predictive Control (MPC)

» Using a CIS 7" as terminal set ensures recursive feasibility in MPC

minimize
N —1
{zi} {us}o

subject to

3

MPC
Loop

| Constraint

P

>
rediction
Time
Step

Limitations of State of the art

Control Invariant Sets

e CIS are in general unknown for nonlinear systems/constraints
 Numerical approximation technigues exist, however:
 They are computationally demanding (curse of dimens.)
* A numerical approximation of a CIS is not a CIS
 —» all safety guarantees are lost!

* Control Barrier Functions and Backup Policies suffer from similar
ISSUES.

Our Contributions

Learning Control Invariant Sets
Viability Boundary Optimal Control (VBOC)

 Method to numerically approximate CIS
|t generates data solving Trajectory Optimization problems
* |t uses supervised learning to approximate set
 PROS:

e Better accuracy/efficiency trade-off than other methods
« CONS:

e Tailored to fully-actuated multi-body systems (e.g., manipulators)

La Rocca, Saveriano, Del Prete (2023). VBOC: Learning the Viability Boundary of a
Robot Manipulator using Optimal Control. IEEE RAL

Safe Control with approximate CIS
Receding Constraint MPC

* Novel MPC formulation, featuring two constraints:

e A soft terminal constraint

* A hard receding constraint
 PROS

* Recursive feasibility under weaker conditions (N-Step CIS)

e Safe abort under even weaker conditions (inner approx. of CIS)
« CONS

 Hard to prove N-Step CIS or inner approx. of CIS

Lunardi, La Rocca, Saveriano, Del Prete (2024). Receding-Constraint Model Predictive Control
using a Learned Approximate Control-Invariant Set. IEEE ICRA.

Receding-Constraint
MPC

Gianni Lunardi
Asia La Rocca
Matteo Saveriano
Andrea Del Prete

Lunardi, La Rocca, Saveriano, Del Prete (2024). Receding-Constraint Model Predictive Control
using a Learned Approximate Control-Invariant Set. IEEE ICRA.

Recursive Feasibility
Model Predictive Control (MPC)

» Using a CIS 7" as terminal set ensures recursive feasibility in MPC

minimize
{zi}d {uity
subject to
N —
N —

What if the terminal set is an approximation of a CIS ‘? ~ 7 ?

Approximate Control Invariance

Graphical example

;.:-f*if{\fﬂ =
S ey & 7
.x2 ~ o \
X N
1 MPC problem can become unfeasible
using 7" instead of 7!
X0
*
A 3
\J
\J
VA X
&
Ss A
W7

Idea #1: Safe Abort

Ensuring Safety

. Assume 7 C7

+ => Evenif 7 is not a CIS, any state in 7 is “safe
 Safe Abort:

* If MPC problem becomes unfeasible

* Find (and follow) trajectory that:

« starts from last predicted state In Y
e reaches an equilibrium state

e Such a trajectory is guaranteed to exist

Approximate Control Invariance
Safe Task Abortion

MPC problem is unfeasible: xequilib
start Safe Abort

Nice! This ensures
SAFETY.

Can we also ensure
RECURSIVE
FEASIBILITY?

ldea #2: Receding Constraint

Ensuring Recursive Feasibility

* Observation
 Having the terminal state in 7 is not necessary to ensure safety

 Having any future state In 7" would be sufficient

e |ldea

« Adapt online the time step for which we constrain the state In Y

0 1 2 3 4 5 6 / 8
he Prediction
10 Moving it backward Time Step
0 g .. we ensure feasibility \straint
010 2310 4‘|O/ » could make the
X / problem unfeasible!
1 RSO 0 1 0 NSO SO AN O .

MPC
" Loop

Hard Constraint And nOW?

MPC
Loop

Hard Constraint

Soft Constraint

1 2 4 5 V4 8
Prediction
Time Step

Add a soft

/ terminal constraint

Soft constraint is
satisfied ¥ we can
shift the hard

constraint forward

/

Receding Constraint MPC

N-Step Control Invariant Set

. Assume 7 C 7 is an N-Step CIS, defined as follows
e If x5 € 7 then it is possible to have x;, € 7 for some k € [1,NV]
« Make hard constraint on '“ﬁ recede In time

 Add soft terminal constraint on %

* Recursive feasibility is guaranteed

 Note: N-Step CIS is a weaker requirement than CIS

N-Step Control Invariance

Graphical example

Soft terminal constraint
IS violated

Terminal constraint is
satisfied again

Simulation Results
Setup

Comparing 5 MPC formulations
3 DoF robot manipulator

Acados software library
Setpoint regulation: x™ = (/" — 0.05, ¢/, g2, 0, 0, 0)
100 simulations from random initial joint configurations

Different horizons N (34-36) to ensure computation time < dt (5 ms)

https://qgithub.com/idra-lab/safe-mpc

https://github.com/idra-lab/safe-mpc

Results
Safety Margin 2%

Results
Safety Margin 10%

Cost & Computation Time
Safety Margin 10%

99-Percentile
MPC Formulation Cost MPC _Computatlon Saf_e Abc?rt
Increase Time [ms] Computation Time [ms]
Naive 0% 3.75 -
Soft Terminal 0.05% 5.50 -
Soft Terminal with o
Abort 0.042% 3.73 130
Hard Terminal o
with Abort 0.042% 3.88 100
ALl 0.023% 3.95 80
Constraint

Future Work

* Learn safe-abort policy to warm-start safe-abort OCP solver
* Use robust optimization to handle dynamics uncertainties
* Application to black-box policies (e.g., from RL)
 Computation/certification of:

* N-Step Control-Invariant Set

* Inner approximation of CIS

VBOC: Learning the
Viability Kernel of a
Robot Manipulator

Asia La Rocca
Matteo Saveriano
Andrea Del Prete

La Rocca, Saveriano, Del Prete (2023). VBOC: Learning the Viability Boundary of a
Robot Manipulator using Optimal Control. IEEE RAL

Problem Definition

 Compute viability kernel for robot
manipulator

0.0 Viability kernel approximation

7.5

e Set of states starting from 5.0
which it is possible to avoid .
constraint violation

0.0

g (rad/s)

o Largest CIS TR

-7.5

 Nonlinear differentiable dynamics _,,

3/4n 7/8m 1 9/8m 5/4
q (rad)

e Nonlinear constraints

 No analytical solution

Backward Reachability

State of the art

* Given a state x, use Trajectory Optimization to determine if it is safe

 Compute trajectory starting from x and reaching an equilibrium
state

« 00-Step Backward Reachability & Viability

Safe

—_— Or
Unsafe

Trajectory

State X— Optimization

TO problem formulation
State of the art

maximize 1
N —1
{xz}(ljv 7{u’£}0

SUbjeCt to Li+1 = f(CCZ,fUJZ) Vi = O, c o
r, e X,u;eld Vi=0,...

To = wsample

LN — TN-1

Learning the Viability Kernel

State of the art

« Sample random states x;

« For each x;, use TO to compute a label SAFE / UNSAFE

e Train a classifier using supervised learning

Dataset Classification

{x., label;} — Training —» Classifier

Our Idea

« Compute states on the boundary of 7

 Learn directly the boundary of 7

 Better accuracy and smaller exploration space

maximize CLT:I}O

{xz}é\ra{uz E])V_l

subject to Li+1 = f(xz,uz) Vi = O, . o
r, e X,u,€eUd Vi=0,...

Problem formulation

General form

maximize aT:L’O
(@} i}~ s
subject to x;11 = f(x;,u;) Vi=0,...,N—1

LN — TN-—-1,

Lemma
If N is sufficiently [oNg ey x* € 07

Complete Coverage?

e Can we completely cover the boundary of 7/?

* |n general: NO!

Start-Convexity

e Assume:

* the robot can compensate for gravity in any configuration;

o the set % is convex.

e Then:

« 7/ is star-convex w.r.t. g

If (9.9) € 7

!

(q,aq9) € 7 Vae€[0,1]

Complete Coverage?

e Can we completely cover the boundary of 7/?

* |n general: NO!

o |f 7 is star-convex: YES!

Application to robot manipulators

init

Joint positions g Maximum
> Trajectory joint
Joint velocity Optimization > velocity
irecti > norm
direction d
0 Vi 0 " init’
a — . S — T S S —= q
d 0 I—dd" 0

Learning the Viability Kernel

» Sample random "states" (g;, d.)
» d = velocity direction
» For each (g;,d;), use TO to compute max joint velocity norm v,

 Use supervised learning to solve regression

Dataset Regression Function
—_— —_—
{Qia di’ Vi} Training f(qa d)=v

2-DoF Manipulator - 1 Hour

RMSE evolution

-
o
(=]

RMSE (rad/s)

R

10_1] \-_—\—/\’,____\

0 500 1000 1500 2000 2500 3000 3500
Time (s)

3-DoF Manipulator - 6 Hour

RMSE evolution

— \VBOC
AL

100 -
E |
©
C
W
(V]
=
o

0 5000 10000 15000 20000

Time (s)

Future Work

 Extension to under-actuated robots (no star-convexity)

e Scale to higher dimensions (e.g., exploit GPU)

* Provide guarantees (e.g., inner approximation)

* Account for uncertainties (e.g., dynamics, state)
 Extension to dynamic obstacles

 More comparison with state of the art (e.g., CBF)

Conclusions

 Complete framework for safe control:
e Learning approximate safe set (for robot manipulators)
e Safe control using approximate safe set

e Main limitations:

« algorithms to compute 7" do not scale

e cannot certify set properties (e.g. N-Step Control Invariance)

 Hope: connection with RL

Thank you!

