

Safe Robot Control

Combining learning and model predictive control

Andrea Del Prete, University of Trento

Why Safety?

Today: Human-Robot Collaboration in Industry

Why Safety?

Tomorrow: Black-box Data-Driven Control Policies

Zitkovich, Brianna, et al. "Rt-2: Vision-language-action models transfer web knowledge to robotic control." Conference on Robot Learning. PMLR, 2023.

What is Safety?

ISO/TS 15066 (2016, revised in 2022)

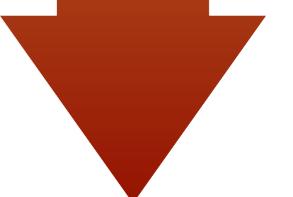
Safety Definition

What is safety?

- Joint angle, velocity, torque limits
- Collision avoidance
 - Self-collision
 - Static obstacles (e.g., table, wall)
- Dynamic obstacles (e.g., humans, other robots)
- Collision management:
 - Contact shall not result in pain or injury

$$g(x, u) \leq 0$$

Easy



Hard

State of the art

Safety Guarantees

State of the art

- Main tools to ensure safety:
 - Control-Invariant Sets (CIS)
 - Control Barrier Functions (CBF)
 - Back-up Policies (BUP)
- Very **similar** tools
 - CBF and BUP implicitly define a CIS
- We focus on CIS in the rest of the presentation

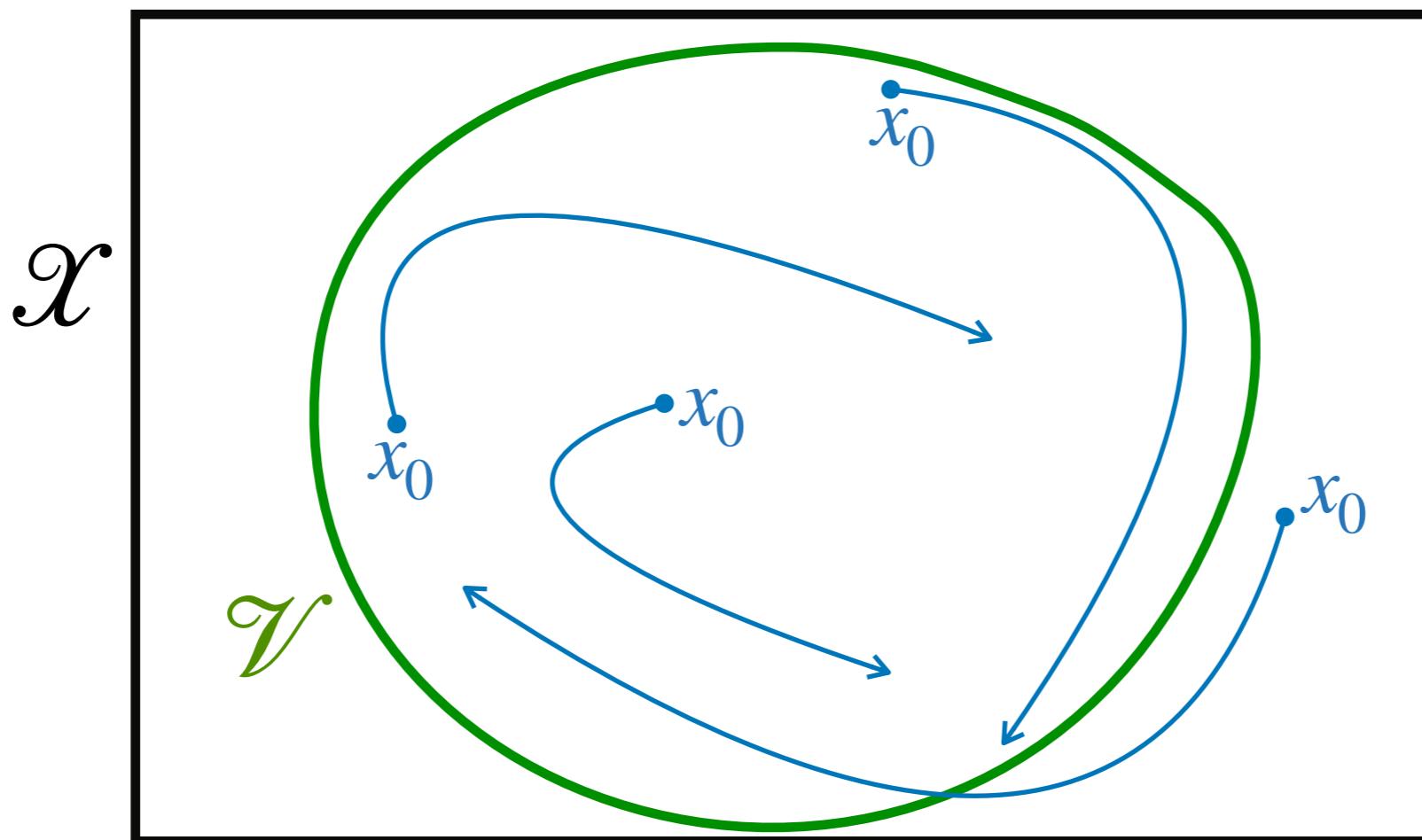
Control Invariant Sets

Definitions

- Constrained **discrete-time** dynamical system:

$$x_{i+1} = f(x_i, u_i) \quad x \in \mathcal{X}, \quad u \in \mathcal{U}$$

\mathcal{V} is a **control invariant** set \longleftrightarrow Once x is in \mathcal{V} , it **can remain** in \mathcal{V} .



Safety via Control Invariant Sets

How does it work?

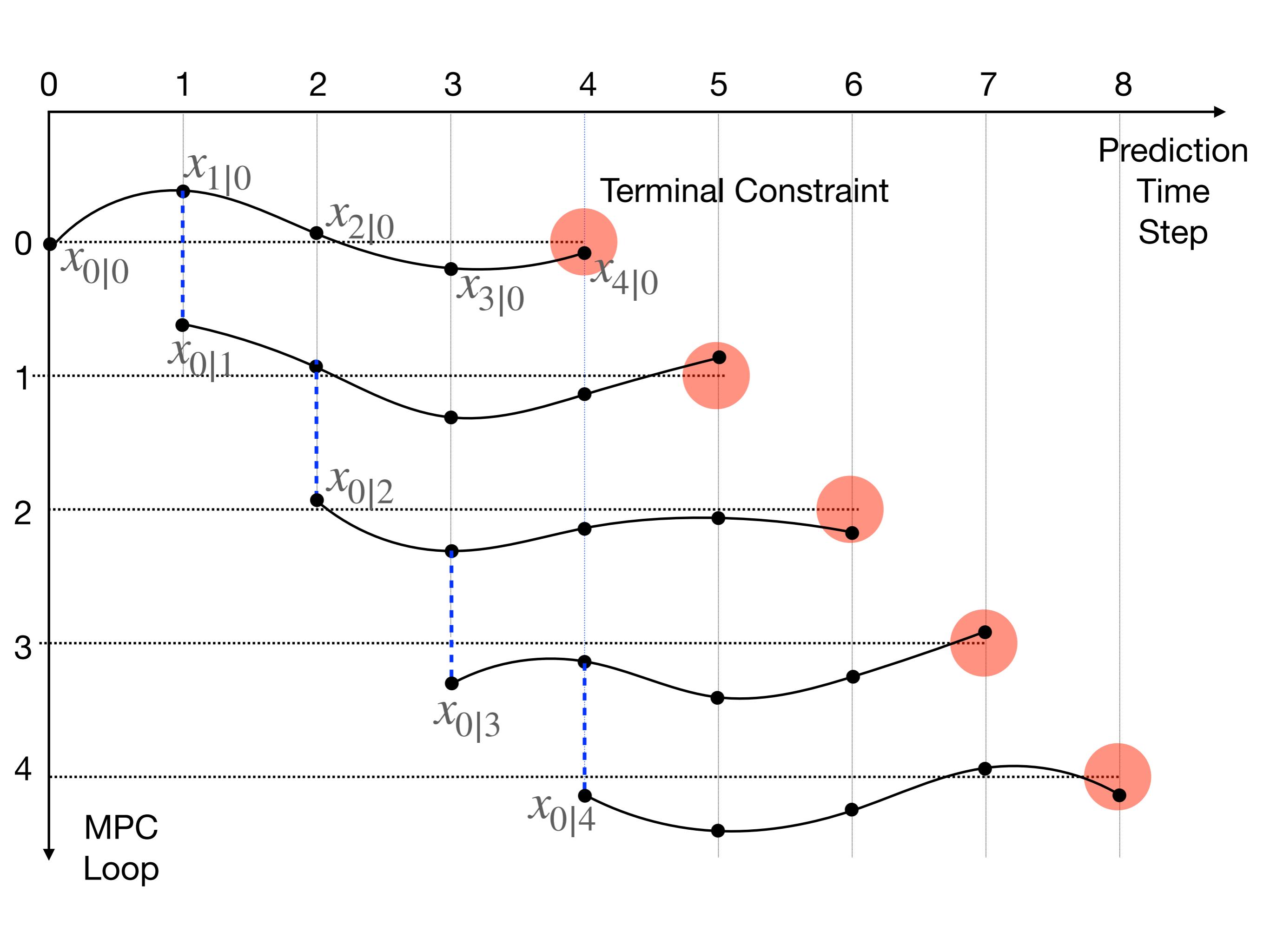
- Suppose we know a CIS \mathcal{V} .
- Suppose \mathcal{V} is a subset of \mathcal{X} (**feasible** state space).
- Suppose we start in \mathcal{V} .
- Then:
 - we can remain in \mathcal{V} **forever**;
 - hence, we can remain in \mathcal{X} forever;
 - hence, we ensure **safety**.

Recursive Feasibility

Model Predictive Control (MPC)

- Using a CIS \mathcal{V} as terminal set ensures recursive feasibility in MPC

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && \boxed{x_N \in \mathcal{V}} \end{aligned}$$



Limitations of State of the art

Control Invariant Sets

- CIS are in general **unknown** for **nonlinear** systems/constraints
- Numerical **approximation** techniques exist, however:
 - They are **computationally demanding** (curse of dimens.)
 - A numerical approximation of a CIS is **not** a CIS
 - → all **safety guarantees are lost!**
- Control Barrier Functions and Backup Policies suffer from similar issues.

Our Contributions

Learning Control Invariant Sets

Viability Boundary Optimal Control (VBOC)

- Method to numerically approximate CIS
- It generates data solving **Trajectory Optimization** problems
- It uses **supervised learning** to approximate set
- PROS:
 - Better **accuracy/efficiency** trade-off than other methods
- CONS:
 - Tailored to **fully-actuated** multi-body systems (e.g., manipulators)

Safe Control with approximate CIS

Receding Constraint MPC

- Novel MPC formulation, featuring two constraints:
 - A **soft terminal** constraint
 - A **hard receding** constraint
- PROS
 - **Recursive feasibility** under weaker conditions (N-Step CIS)
 - **Safe abort** under even weaker conditions (inner approx. of CIS)
- CONS
 - Hard to prove **N-Step CIS** or **inner approx.** of CIS

Receding-Constraint MPC

Gianni Lunardi
Asia La Rocca
Matteo Saveriano
Andrea Del Prete

Lunardi, La Rocca, Saveriano, Del Prete (2024). Receding-Constraint Model Predictive Control using a Learned Approximate Control-Invariant Set. IEEE ICRA.

Recursive Feasibility

Model Predictive Control (MPC)

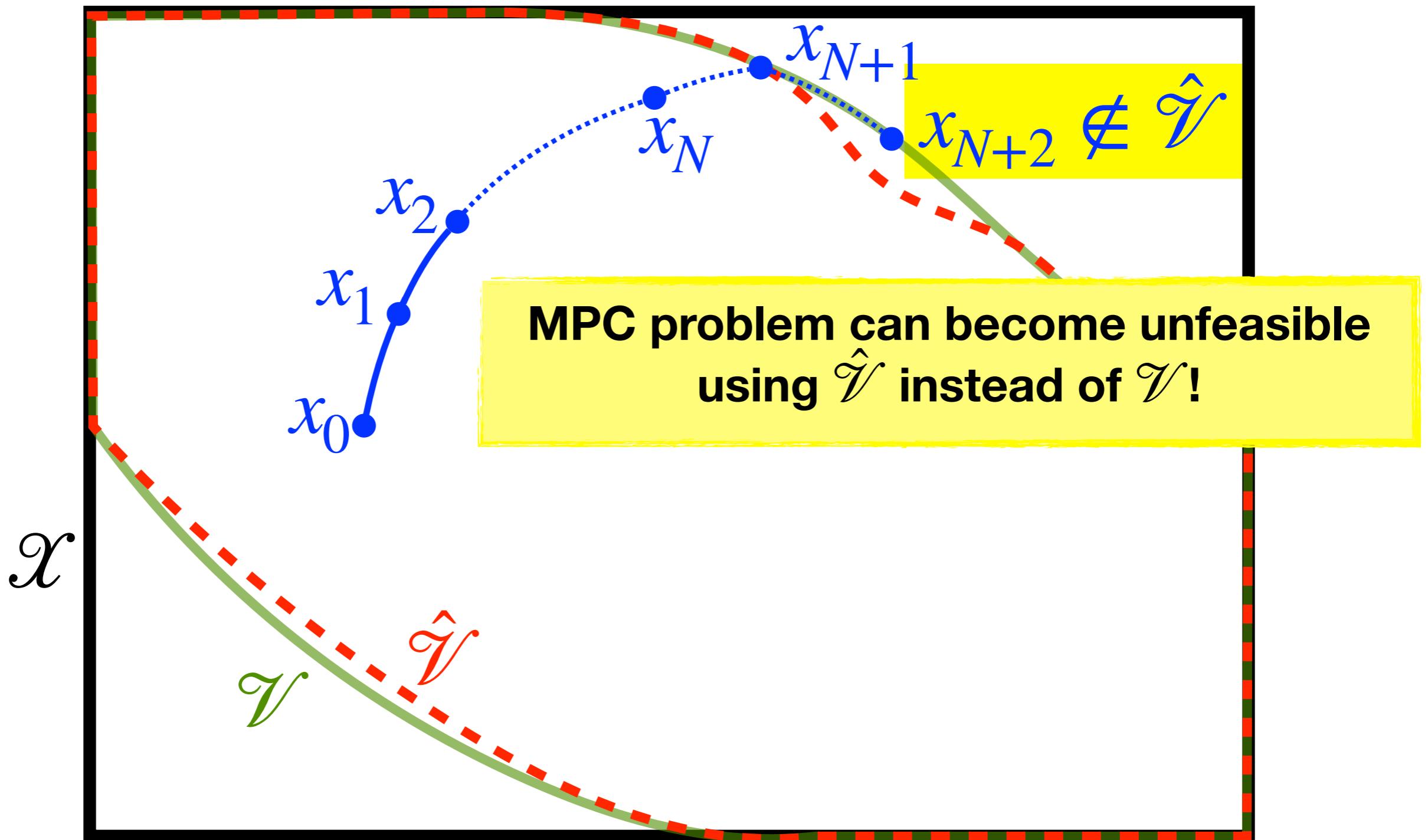
- Using a CIS \mathcal{V} as terminal set ensures recursive feasibility in MPC

$$\begin{aligned} & \text{minimize}_{\{x_i\}_0^N, \{u_i\}_0^{N-1}} \quad \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} \quad x_0 = x_{init} \\ & \quad x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & \quad x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & \quad \boxed{x_N \in \hat{\mathcal{V}}} \end{aligned}$$

What if the terminal set is an approximation of a CIS $\hat{\mathcal{V}} \approx \mathcal{V}$?

Approximate Control Invariance

Graphical example



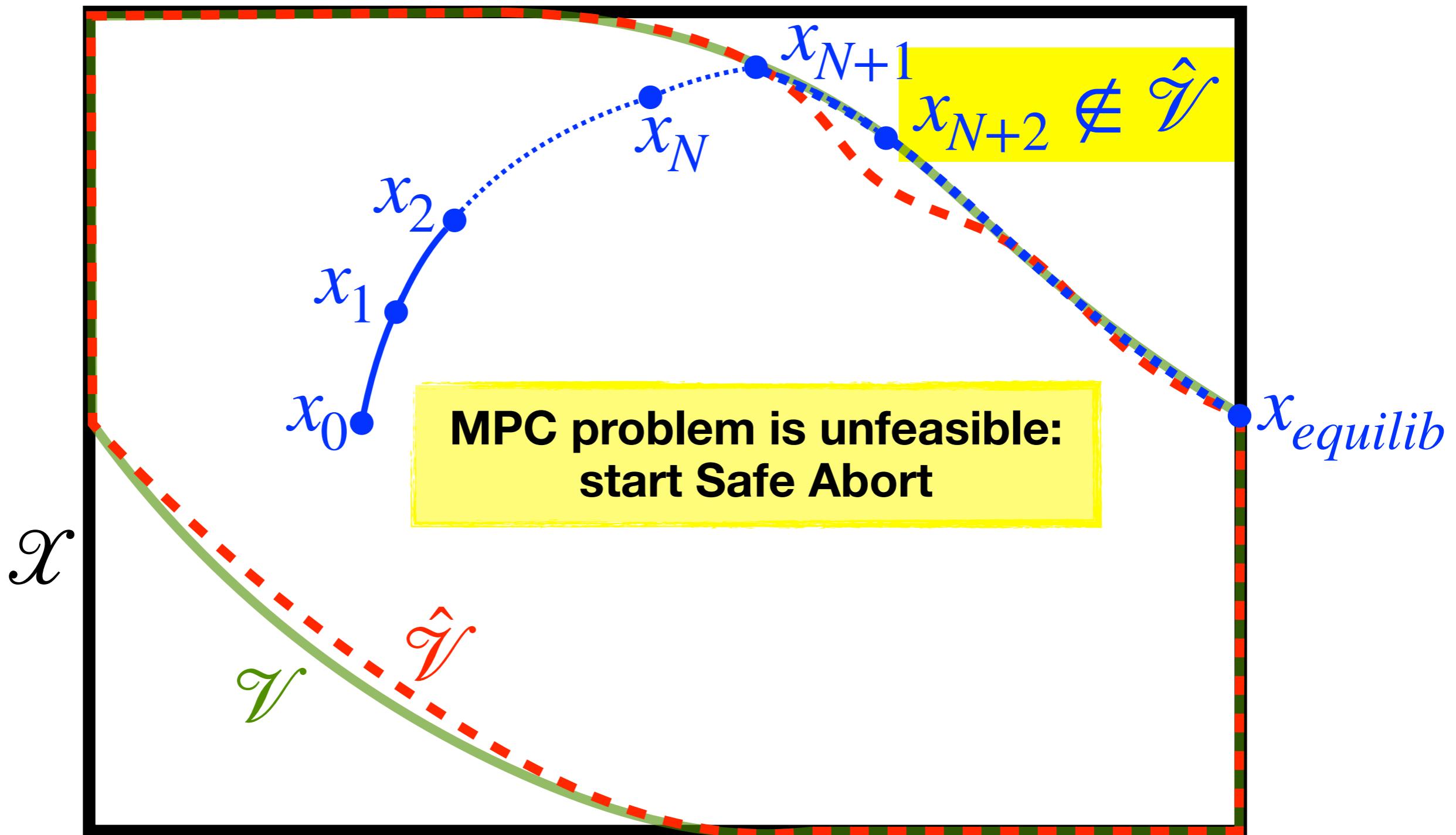
Idea #1: Safe Abort

Ensuring Safety

- Assume $\hat{\mathcal{V}} \subseteq \mathcal{V}$
 - => Even if $\hat{\mathcal{V}}$ is not a CIS, any state in $\hat{\mathcal{V}}$ is “safe”
- **Safe Abort:**
 - If MPC problem becomes **unfeasible**
 - Find (and follow) trajectory that:
 - starts from last predicted state in $\hat{\mathcal{V}}$
 - reaches an **equilibrium** state
 - Such a trajectory is **guaranteed** to exist

Approximate Control Invariance

Safe Task Abortion



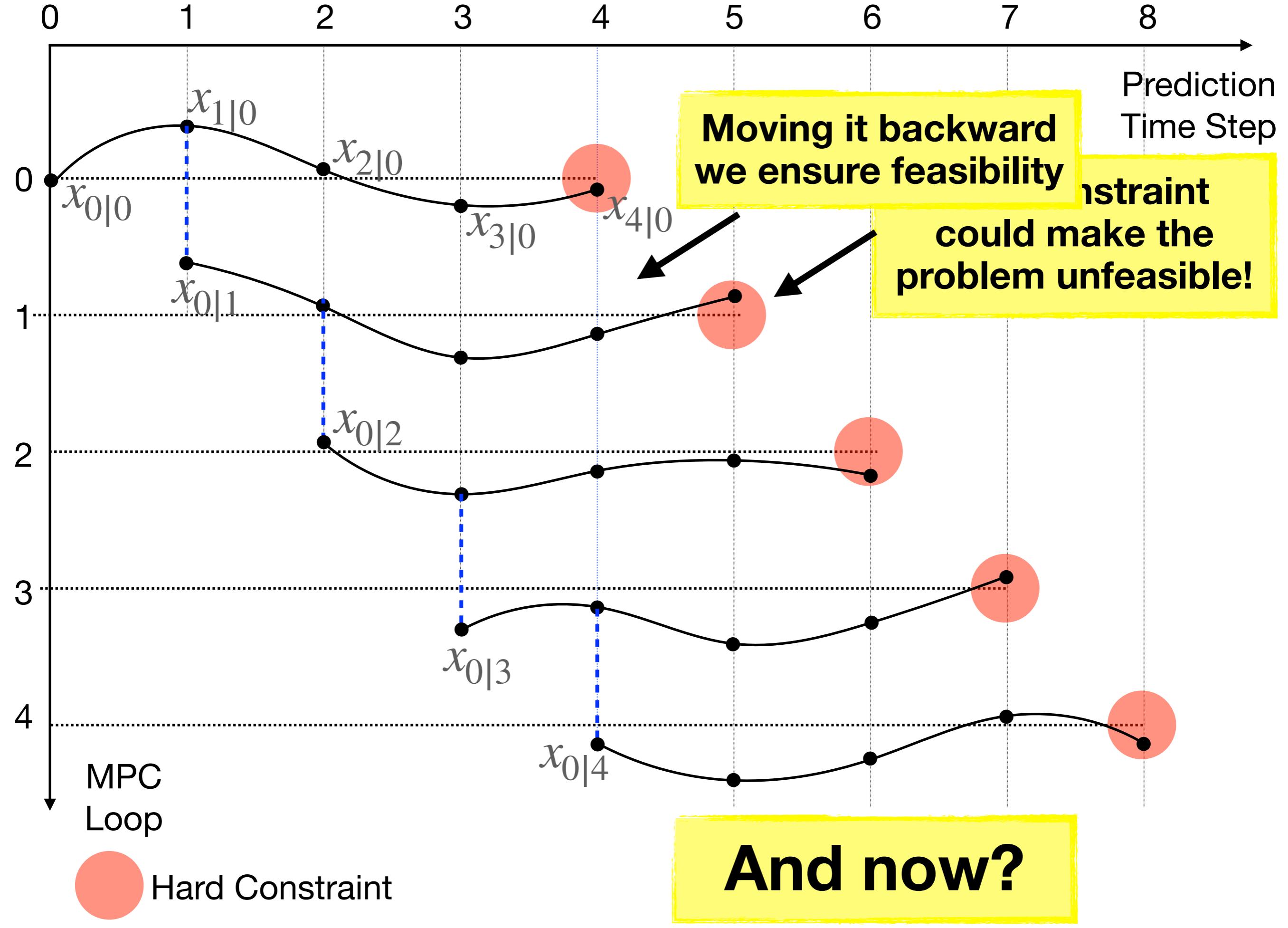
Nice! This ensures
SAFETY.

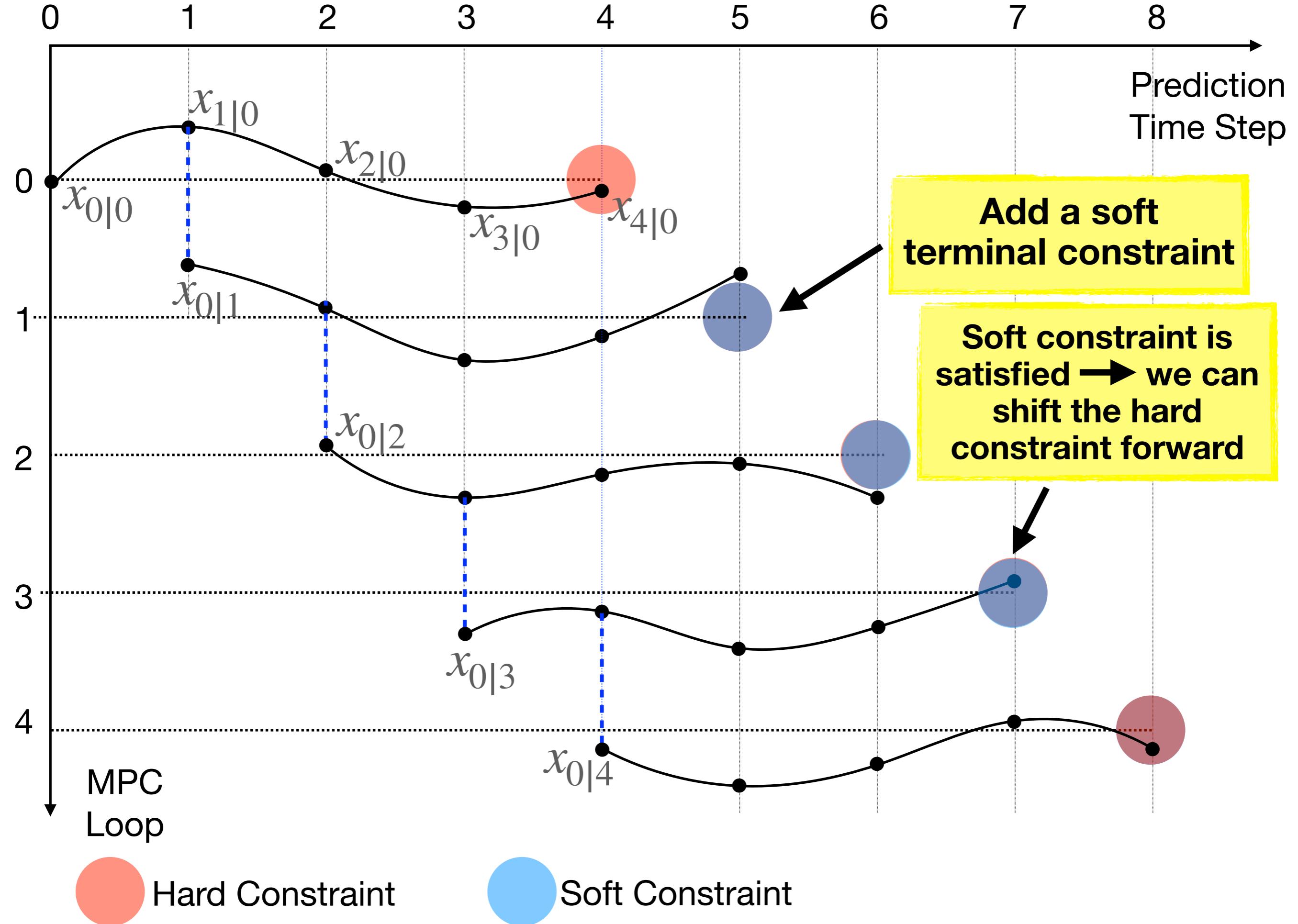
Can we also ensure
**RECURSIVE
FEASIBILITY?**

Idea #2: Receding Constraint

Ensuring Recursive Feasibility

- **Observation**
 - Having the **terminal** state in $\hat{\mathcal{V}}$ is not necessary to ensure safety
 - Having **any future state** in $\hat{\mathcal{V}}$ would be sufficient
- **Idea**
 - **Adapt online** the **time step** for which we constrain the state in $\hat{\mathcal{V}}$





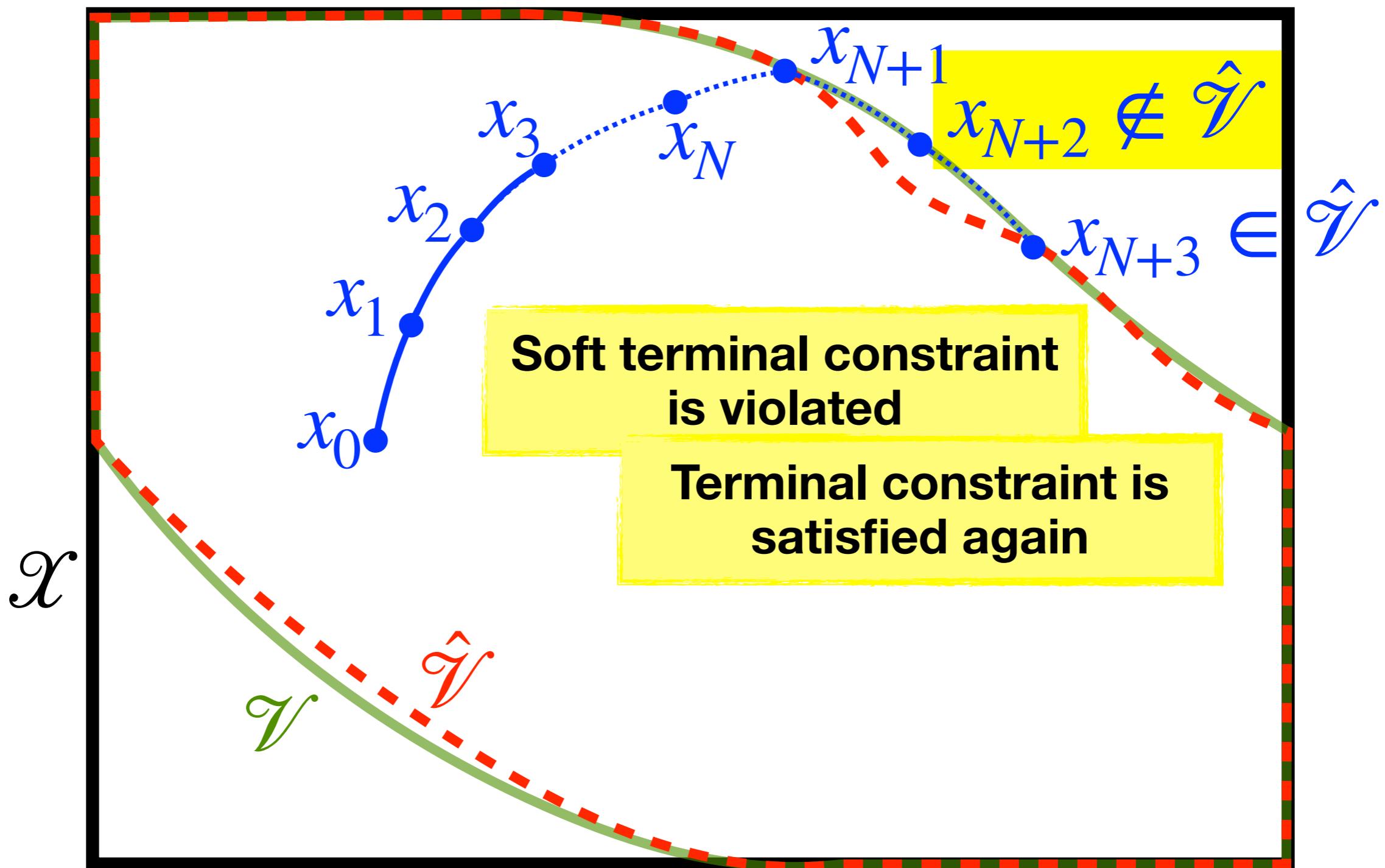
Receding Constraint MPC

N-Step Control Invariant Set

- Assume $\hat{\mathcal{V}} \subseteq \mathcal{V}$ is an **N-Step CIS**, defined as follows
 - If $x_0 \in \hat{\mathcal{V}}$ then it is possible to have $x_k \in \hat{\mathcal{V}}$ for some $k \in [1, N]$
 - Make **hard** constraint on $\hat{\mathcal{V}}$ **recede** in time
 - Add **soft terminal** constraint on $\hat{\mathcal{V}}$
- **Recursive feasibility** is guaranteed
 - Note: **N-Step CIS** is a weaker requirement than CIS

N-Step Control Invariance

Graphical example



Simulation Results

Setup

- Comparing 5 MPC formulations
- 3 DoF robot manipulator
- Acados software library
- Setpoint regulation: $x^{\text{ref}} = (q_0^{\text{max}} - 0.05, q_1^{\text{mid}}, q_2^{\text{mid}}, 0, 0, 0)$
- 100 simulations from random initial joint configurations
- Different horizons N (34-36) to ensure computation time < dt (5 ms)
- <https://github.com/idra-lab/safe-mpc>

Results

Safety Margin 2%

MPC Formulation	# Tasks Completed	# Tasks Safely Aborted	# Tasks Failed
Naive	69	-	31
Soft Terminal	69	-	31
Soft Terminal with Abort	70	11	19
Hard Terminal with Abort	70	8	22
Receding Constraint	77	18	5

Can we do better?

Results

Safety Margin 10%

MPC Formulation	# Tasks Completed	# Tasks Safely Aborted	# Tasks Failed
Naive	69	-	31
Soft Terminal	69	-	31
Soft Terminal with Abort	70	22	8
Hard Terminal with Abort	70	21	9
Receding Constraint	77	20	3

Cost & Computation Time

Safety Margin 10%

MPC Formulation	Cost Increase	99-Percentile	
		MPC Computation Time [ms]	Safe Abort Computation Time [ms]
Naive	0%	3.75	-
Soft Terminal	0.05%	5.50	-
Soft Terminal with Abort	0.042%	3.73	130
Hard Terminal with Abort	0.042%	3.88	100
Receding Constraint	0.023%	3.95	80

Future Work

- Learn safe-abort **policy** to **warm-start** safe-abort OCP solver
- Use **robust** optimization to handle dynamics **uncertainties**
- Application to black-box policies (e.g., from RL)
- Computation/certification of:
 - **N-Step** Control-Invariant Set
 - **Inner approximation** of CIS

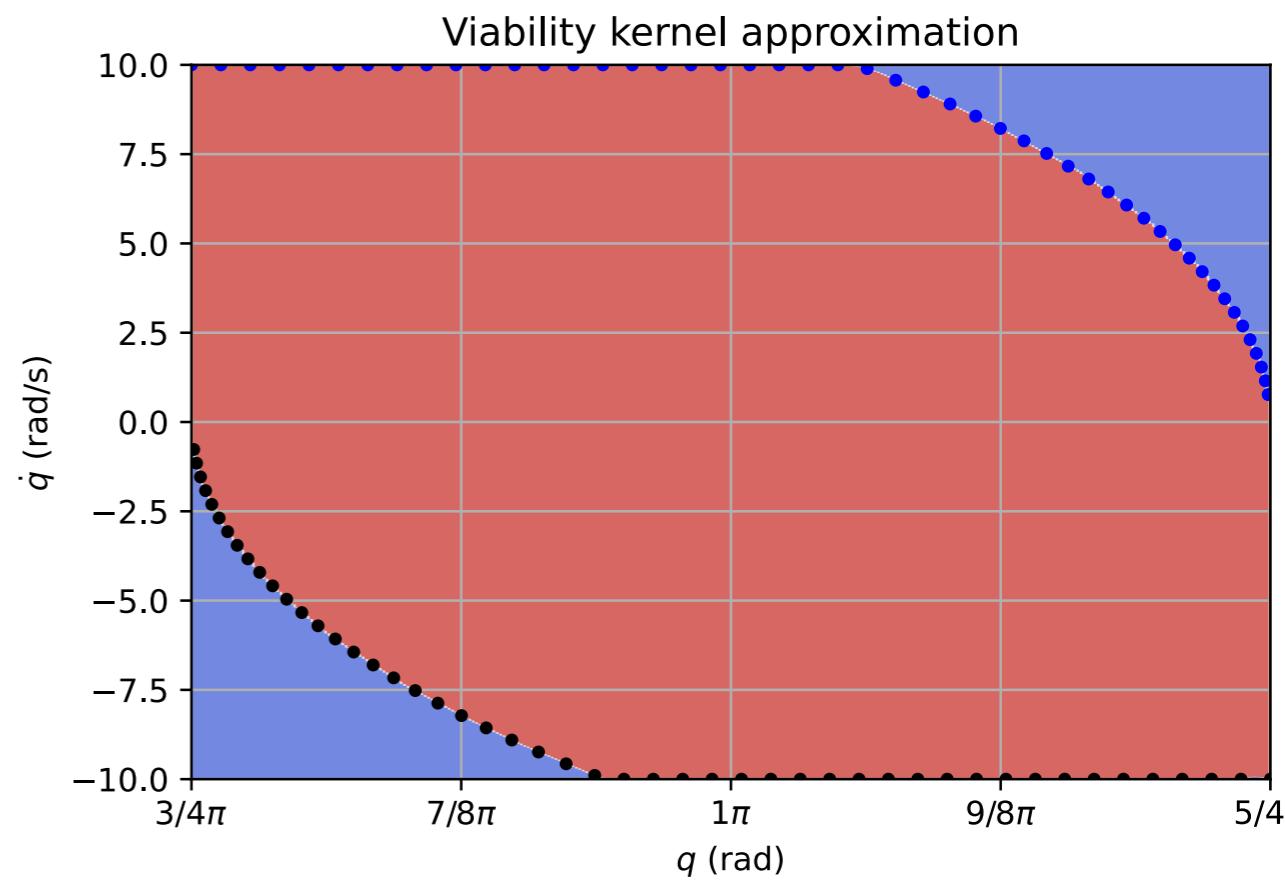
VBOC: Learning the Viability Kernel of a Robot Manipulator

Asia La Rocca
Matteo Saveriano
Andrea Del Prete

La Rocca, Saveriano, Del Prete (2023). VBOC: Learning the Viability Boundary of a Robot Manipulator using Optimal Control. IEEE RAL

Problem Definition

- Compute **viability kernel** for robot manipulator
 - Set of states starting from which it is possible to avoid constraint violation
 - **Largest CIS**
 - **Nonlinear** differentiable dynamics
 - **Nonlinear** constraints
 - No analytical solution



Backward Reachability

State of the art

- Given a state x , use **Trajectory Optimization** to determine if it is **safe**
- Compute trajectory starting from x and reaching an **equilibrium** state
- ∞ -Step Backward Reachability \approx Viability

TO problem formulation

State of the art

$$\underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{maximize}} \quad 1$$

$$\text{subject to } x_{i+1} = f(x_i, u_i) \quad \forall i = 0, \dots, N-1$$

$$x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad \forall i = 0, \dots, N-1$$

$$x_0 = x^{\text{sample}}$$

$$x_N = x_{N-1}$$

Learning the Viability Kernel

State of the art

- Sample random states x_i
- For each x_i , use TO to compute a label SAFE / UNSAFE
- Train a classifier using supervised learning

Our Idea

- Compute states on the **boundary** of \mathcal{V}
- Learn directly the **boundary** of \mathcal{V}
- Better **accuracy** and smaller **exploration** space

$$\underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{maximize}} \cancel{1} \quad a^\top x_0$$

$$\text{subject to } x_{i+1} = f(x_i, u_i) \quad \forall i = 0, \dots, N-1$$

$$x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad \forall i = 0, \dots, N-1$$

$$\cancel{x_0 = x^{\text{sample}}}$$

$$x_N = x_{N-1}$$

Problem formulation

General form

$$\underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{maximize}} \quad a^\top x_0$$

$$\text{subject to } x_{i+1} = f(x_i, u_i) \quad \forall i = 0, \dots, N-1$$

$$x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad \forall i = 0, \dots, N-1$$

$$Sx_0 = s$$

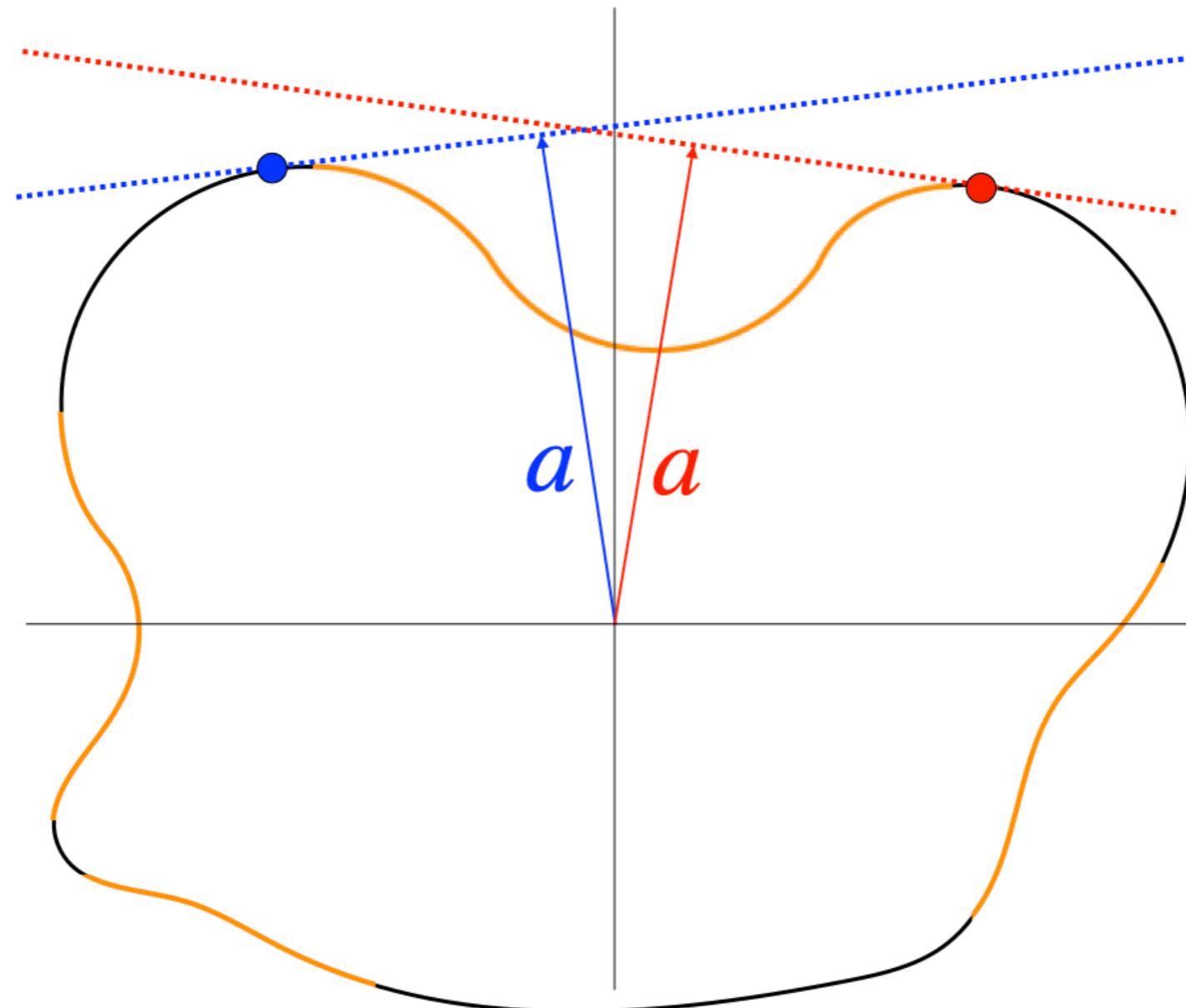
$$x_N = x_{N-1},$$

Lemma

If N is sufficiently long $\rightarrow x_0^* \in \partial \mathcal{V}$

Complete Coverage?

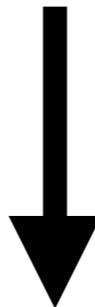
- Can we **completely** cover the **boundary** of \mathcal{V} ?
 - In general: **NO!**



Start-Convexity

- Assume:
 - the robot can compensate for **gravity** in any configuration;
 - the set \mathcal{U} is **convex**.
- Then:
 - \mathcal{V} is **star-convex** w.r.t. \dot{q}

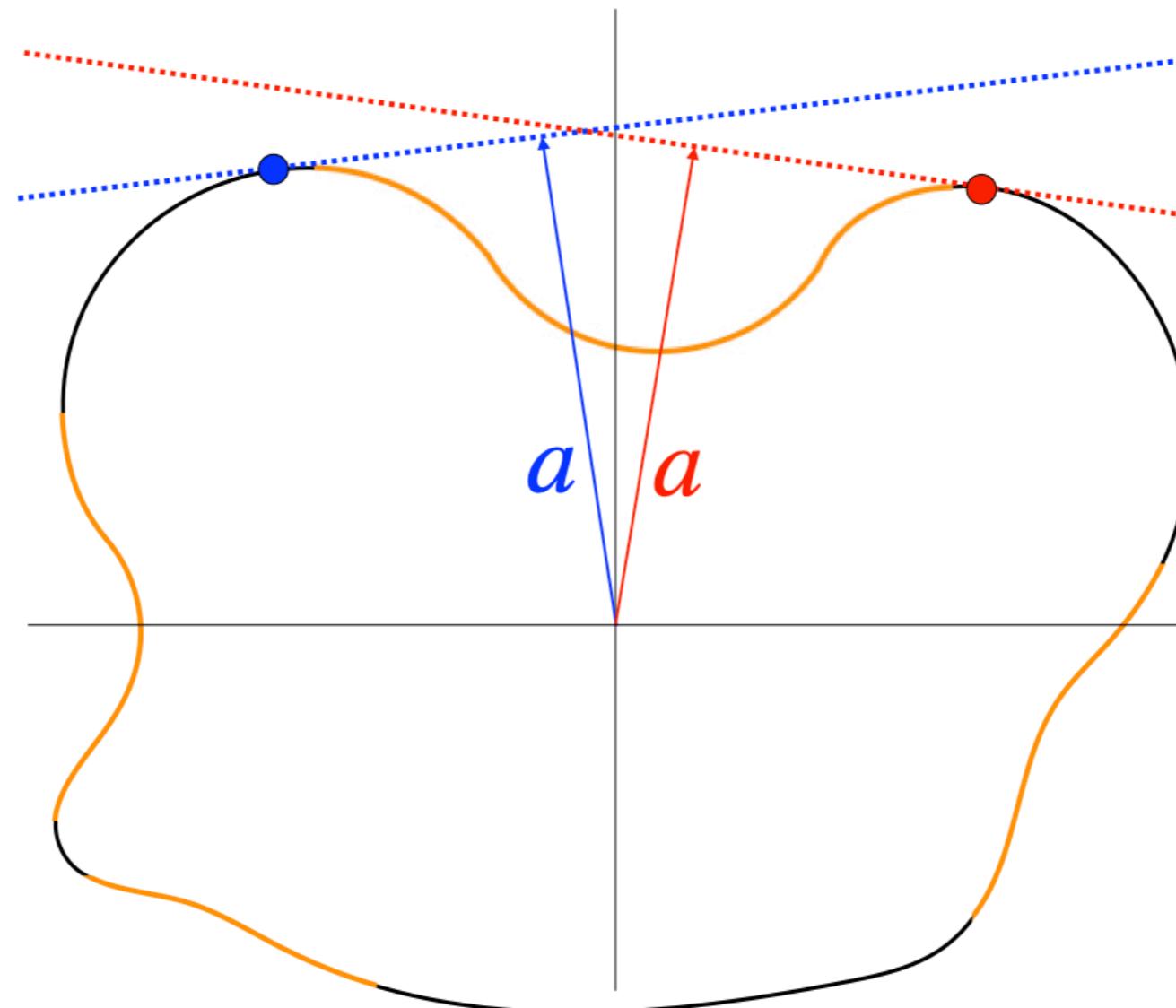
If $(q, \dot{q}) \in \mathcal{V}$



$(q, \alpha \dot{q}) \in \mathcal{V} \quad \forall \alpha \in [0,1]$

Complete Coverage?

- Can we **completely** cover the **boundary** of \mathcal{V} ?
 - In general: **NO!**
 - If \mathcal{V} is **star-convex**: **YES!**



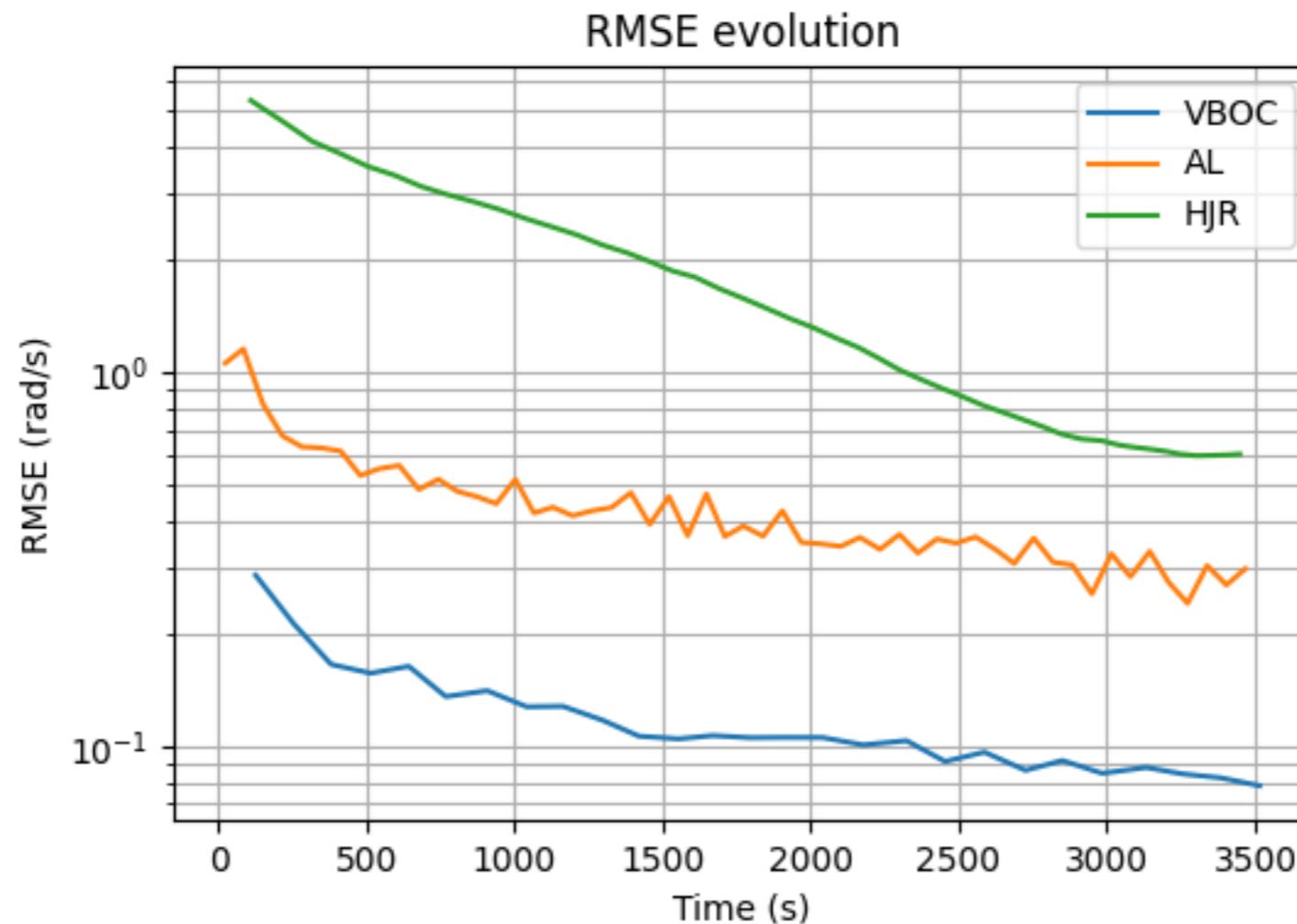
Application to robot manipulators

$$a = \begin{bmatrix} 0 \\ d \end{bmatrix}, \quad S = \begin{bmatrix} I & 0 \\ 0 & I - dd^\top \end{bmatrix}, \quad s = \begin{bmatrix} q^{init} \\ 0 \end{bmatrix}$$

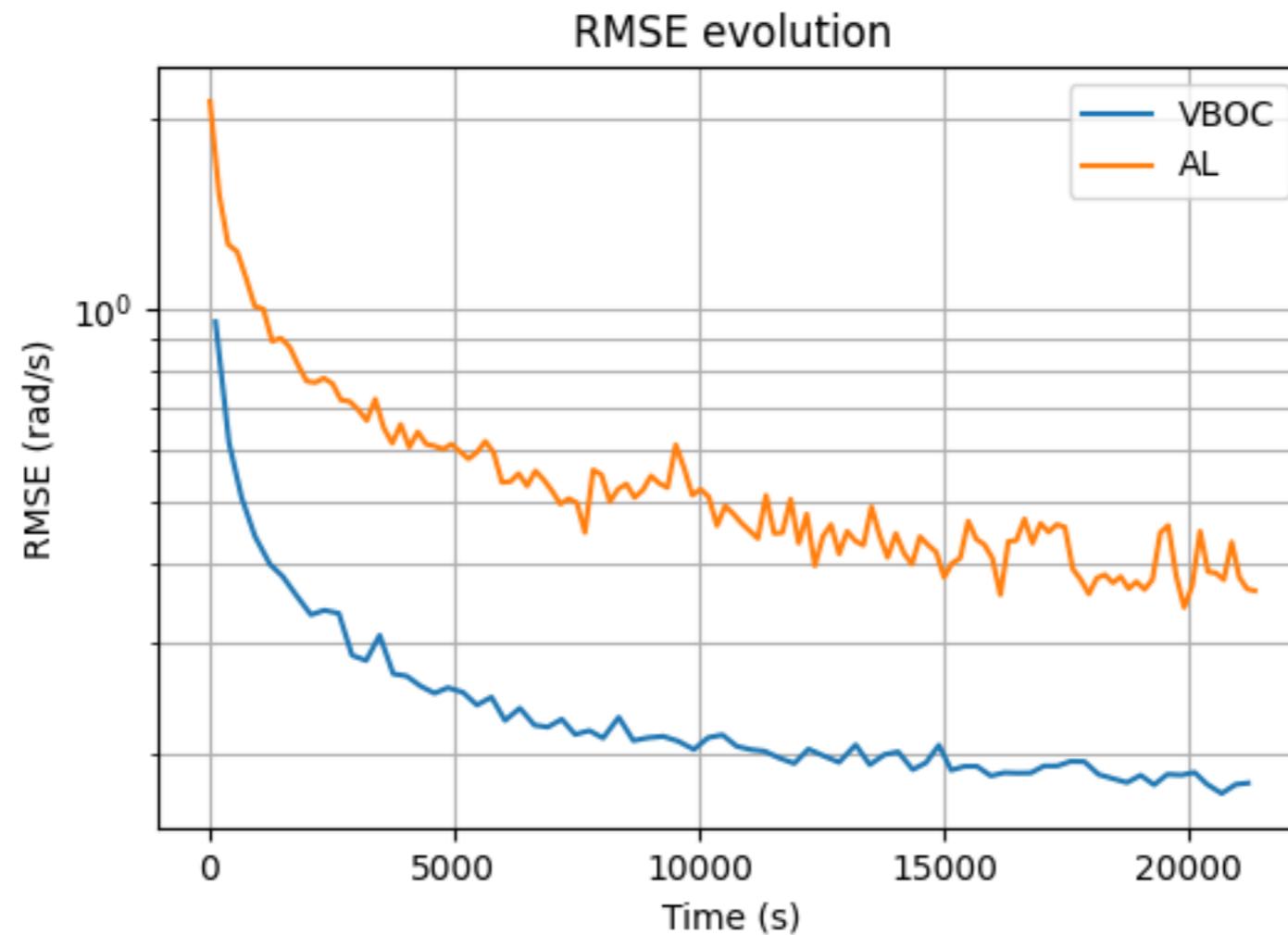
Learning the Viability Kernel

- Sample random "states" (q_i, d_i)
- d = velocity direction
- For each (q_i, d_i) , use TO to compute **max joint velocity norm** v_i
- Use supervised learning to solve **regression**

2-DoF Manipulator - 1 Hour



3-DoF Manipulator - 6 Hour



Future Work

- Extension to **under-actuated** robots (no star-convexity)
- Scale to higher **dimensions** (e.g., exploit GPU)
- Provide **guarantees** (e.g., inner approximation)
- Account for **uncertainties** (e.g., dynamics, state)
 - Extension to **dynamic** obstacles
- More comparison with state of the art (e.g., CBF)

Conclusions

- Complete framework for safe control:
 - Learning approximate **safe set** (for robot manipulators)
 - **Safe control** using approximate safe set
- Main limitations:
 - algorithms to compute $\hat{\mathcal{V}}$ **do not scale**
 - cannot **certify** set properties (e.g. N-Step Control Invariance)
- **Hope:** connection with **RL**

Thank you!

Safe Robot Control

Combining learning and model predictive control

Andrea Del Prete, University of Trento