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Is there anything RL cannot do?

Is Trajectory Optimization bound to die?
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The i1Issues with RL

My two cents
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Can we use ideas from Trajectory Optimization
to make RL safe and efficient?
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Reinforcement Learning V¥ Trajectory Optimization
WITH?

,cz:(gllz?(t)/o [ (z(t),u(t))dt + s (z(T))

s. t. z(t) = f(z(t),u(t),t) Vtel0,T]
CIJ(O) — Ly
Umin < U(t) < Umae  VEE [0, T

Reinforcement Learning Trajectory Optimization
-4 Less prone to poor local minima -+ Data efficient (fast)
-+ Derivative free -4 Exploits knowledge of dynamics derivatives
=4+ Policy as output == Can get stuck in poor local minima

== Poor data efficiency (slow) m= [rgjectory as output



Deep Deterministic Policy Gradient (DDPG)
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CACTO

Trajectory Optimization

(TO)
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[1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global
Optimality. IEEE Robotics and Automation Letters



Results

Task: find shortest path to target using low control effort and avoiding obstacles
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Systems: 2D single/double integrator, 6D car model, 3-joint manipulator
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Results: 3-DoF Manipulator

Initial Conditions
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Comparison: CACTOvs TO

% of times TO finds better solution if warm-started with
CACTO rather than: 15

\.
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Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies
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Conclusions

e TO guides the RL exploration making it sample efficient

e Global convergence proof for discrete-space version of CACTO

Recent extension

e Improve data efficiency leveraging derivative of Value function [2]

Future work
e Bias initial episode state to improve data efficiency
e Parallelize on GPUs

e Handle non-differentiable dynamics

[2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with
Trajectory Optimization. In Learning for Dynamics and Control Conference (L4DC)
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Why Safety?

Today Tomorrow
Human-Robot Collaboration in Industry Black-box Data-Driven Control Policies

.. !' B — —"'/ ' - -
1/ B ~OSuENS
' —_ -

N
|

08
N
-

5 e Zitkovich, Brianna, et al. "Rt-2: Vision-language-action models transfer web

knowledge to robotic control." Conference on Robot Learning. PMLR, 2023.

https://www.therobotreport.com/manufacturing/ria-osha-robot-safety/



Control Invariant Sets

Constrained discrete-time dynamical system:

X = S, uy)

7 is a control invariant set
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Once xisin 7/, it can remain in 7




Recursive Feasibility
Model Predictive Control (MPC)

Using a CIS 7 as terminal set ensures recursive feasibility in MPC

N-1
minimize Z bi(xi,u;) +€n(TN)
{zi}d Auwite " TG

1 =0...N —1
1 =0...N —1

What if the terminal set is an MPC problem can become
approximation ofaCIS 7" ~ 7" ? p unfeasible using 7 instead of 7!



Idea #1: Safe Abort

Ensuring Safety

« Assume % C 7' = N-step backward reachable set of equilibrium states

. = Even if 7 is not a CIS, any state Iin 7 is “safe”
» Safe Abort:
* |f MPC problem becomes unfeasible

* Find (and follow) trajectory that:

o starts from last predicted state In 7
* reaches an equilibrium state

e Such a trajectory is guaranteed to exist



Nice! This ensures SAFETY.

Can we also ensure
RECURSIVE FEASIBILITY?




ldea #2: Receding Constraint

Ensuring Recursive Feasibility

* Observation
e Having the terminal state In 7 is not necessary to ensure safety

e Having any future state In 7" would be sufficient

e ldea

o Adapt online the time step for which we constrain the state In 7
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Simulation Results

Comparing 5 MPC formulations

3 DoF robot manipulator

 Acados software library

Setpoint regulation task
100 simulations from random initial joint configurations
Horizon N=35 to ensure computation time < dt (5 ms)

https://github.com/idra-lab/safe-mpc



https://github.com/idra-lab/safe-mpc

Results
Safety Margin 2%
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Can we do better?




Results
Safety Margin 10%




Cost & Computation Time
Safety Margin 10%




Conclusions

* Novel MPC formulation ensuring

* Recursive feasibility under weaker conditions (N-Step CIS)

o Safety under even weaker conditions (inner approx. of CIS)
On-going/future work
» | earn safe-abort policy to warm-start safe-abort OCP solver
 Hardware implementation
 Computation/certification of N-Step CIS and inner approx. of CIS
 Handle dynamics uncertainties/obstacles

* Application as safety filter for RL policies



Take-Home Message
Globally Optimal and Safe Robot Control

* Using ideas from TO we can make RL efficient and safe
* Use dynamics derivatives to guide RL exploration (CACTO)

* Use Control Invariance to make control (RL) safe

Current challenges

e algorithms to compute 7" do not scale and cannot certify set
properties (e.g. N-Step Control Invariance)

 dynamics derivatives are ill-defined in contact-rich tasks
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