

Safe and Efficient robot control

Combining **learning** and trajectory optimization

Andrea Del Prete

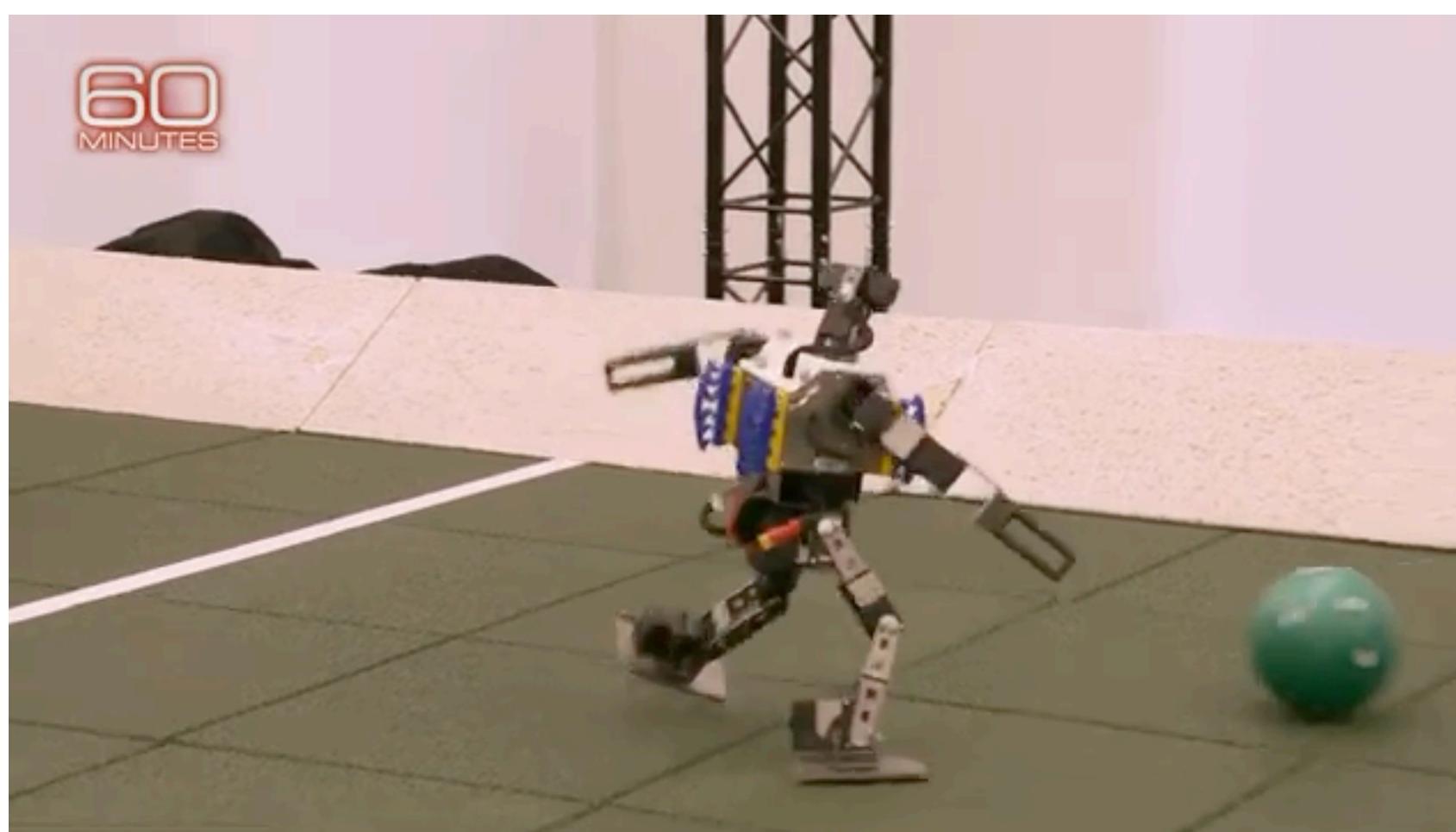
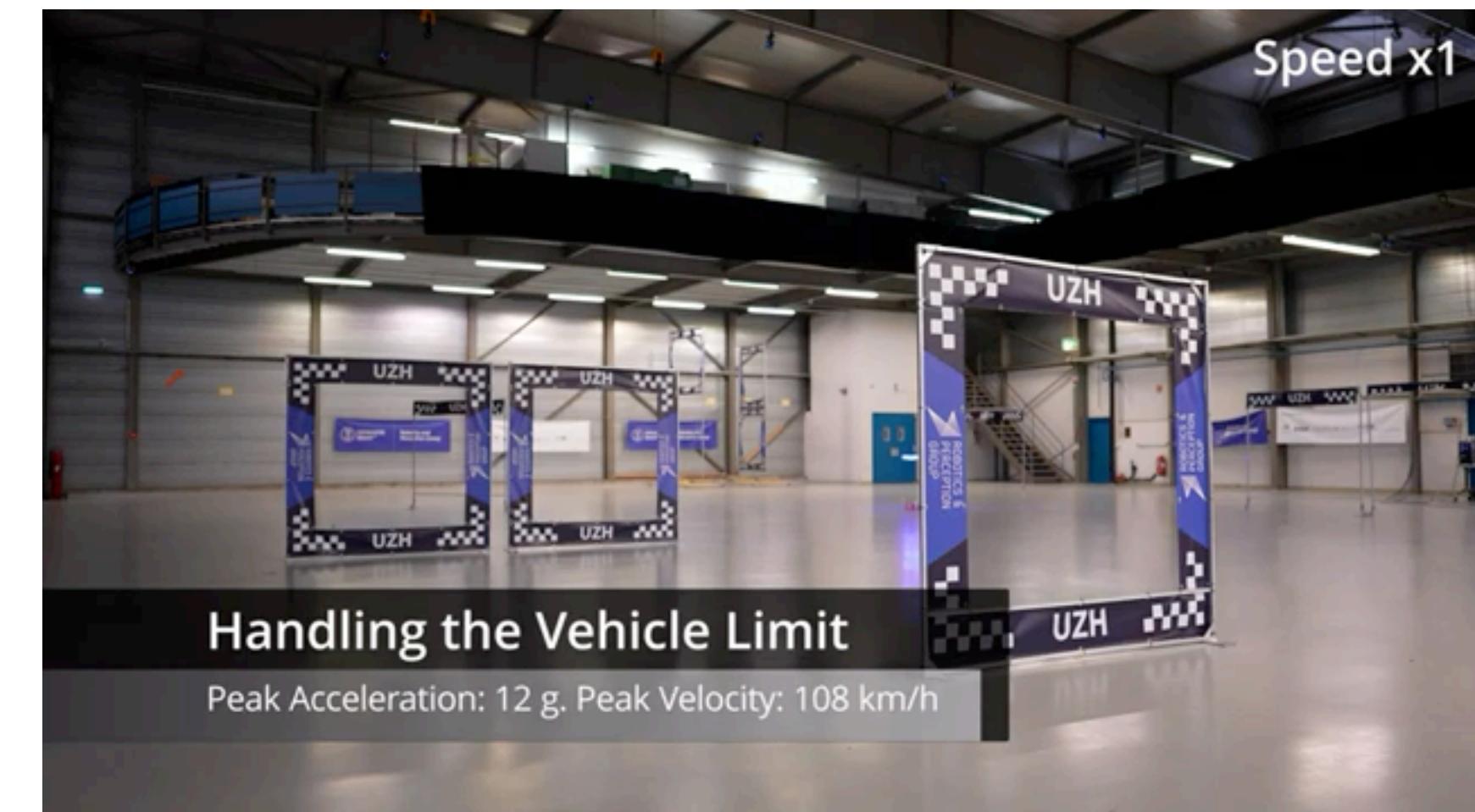
**UNIVERSITY
OF TRENTO**

Is there **anything** RL cannot do?

Is **Trajectory Optimization** bound to **die**?

Lee, Hwangbo, Wellhausen, Koltun, Hutter (2020). Learning quadrupedal locomotion over challenging terrain. *Science Robotics*

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala, D., Wulfmeier, M., ... Heess, N. (2023). Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning



Song, Romero, Müller, Koltun, Scaramuzza, (2023). Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. *Science Robotics*

The **issues** with RL

My two cents

Poor **efficiency**

- Data efficiency
- Energy efficiency
- Time efficiency

Poor **safety**

- No explicit constraints
- No guarantees
- Safety-critical applications

Can we use ideas from **Trajectory Optimization** to make **RL** safe and efficient?

Safe and **Efficient** robot control

Combining **learning** and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

UNIVERSITY
OF TRENTO

**

UNIVERSITY OF
NOTRE DAME

PSL

CACTO

Continuous Actor-Critic with Trajectory Optimization

**Gianluigi Grandesso*, Elisa Alboni*, Gastone Rosati Papini*, Patrick
Wensing**, Justin Carpentier***, Andrea Del Prete***

- [1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global Optimality. *IEEE Robotics and Automation Letters*
- [2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with Trajectory Optimization. In *Learning for Dynamics and Control Conference (L4DC)*

Reinforcement Learning ~~VS~~ Trajectory Optimization WITH?

$$\begin{aligned} \min_{x(t), u(t)} \quad & \int_0^T l(x(t), u(t)) dt + l_f(x(T)) \\ \text{s. t.} \quad & \dot{x}(t) = f(x(t), u(t), t) \quad \forall t \in [0, T] \\ & x(0) = x_0 \\ & u_{min} < u(t) < u_{max} \quad \forall t \in [0, T] \end{aligned}$$

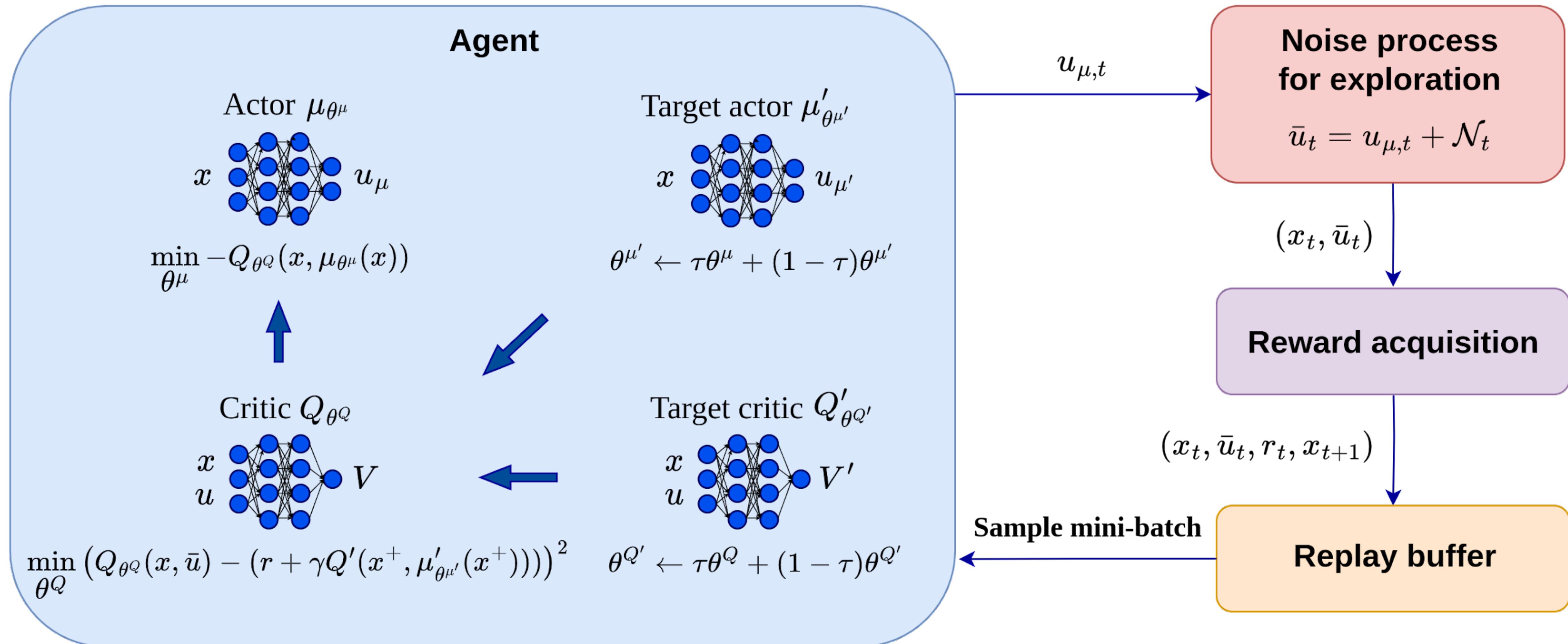
Reinforcement Learning

- + Less prone to poor local minima
- + Derivative free
- + Policy as output
- Poor data efficiency (slow)

Trajectory Optimization

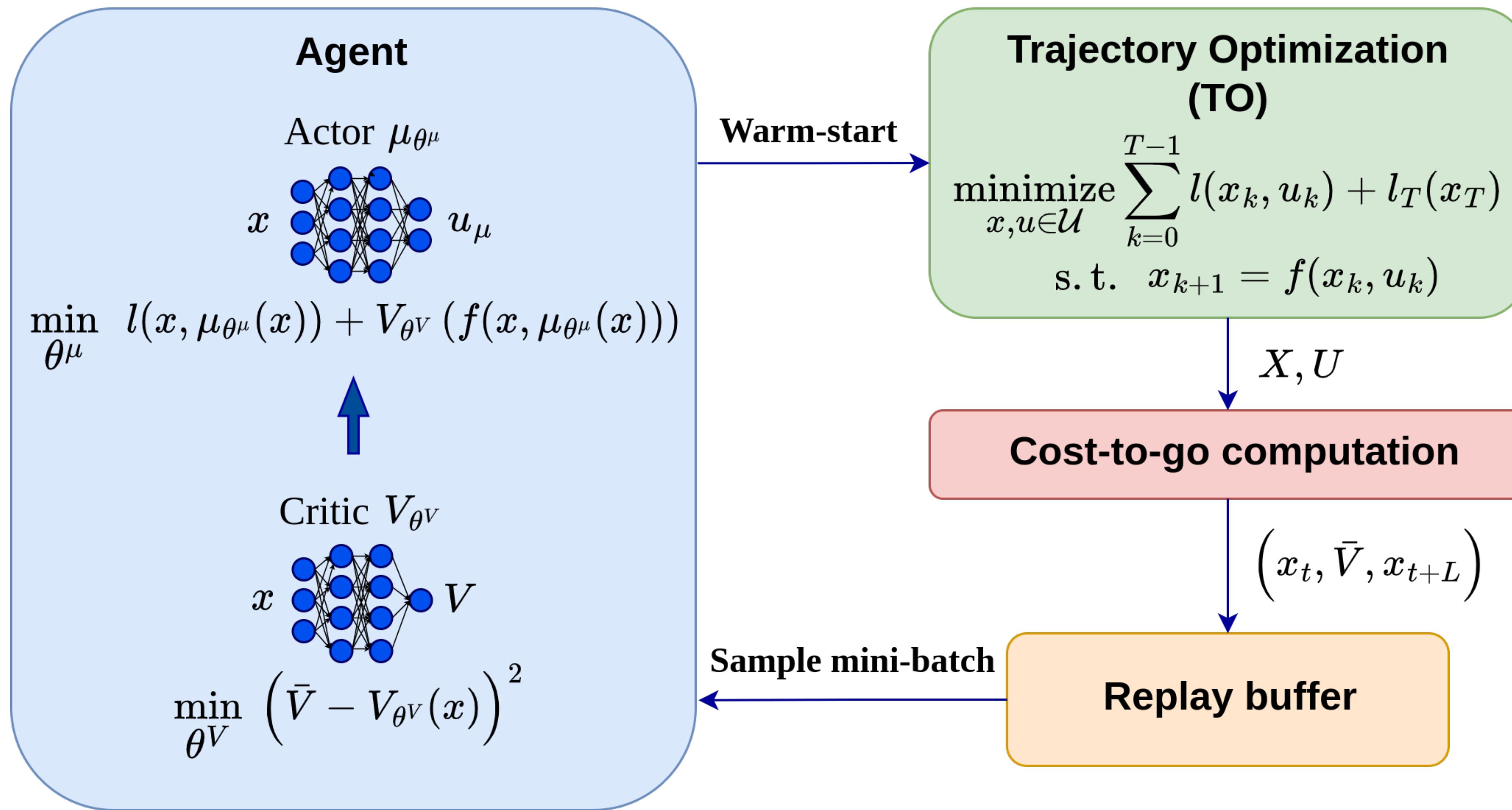
- + Data efficient (fast)
- + Exploits knowledge of dynamics derivatives
- Can get stuck in poor local minima
- Trajectory as output

Deep Deterministic Policy Gradient (DDPG)



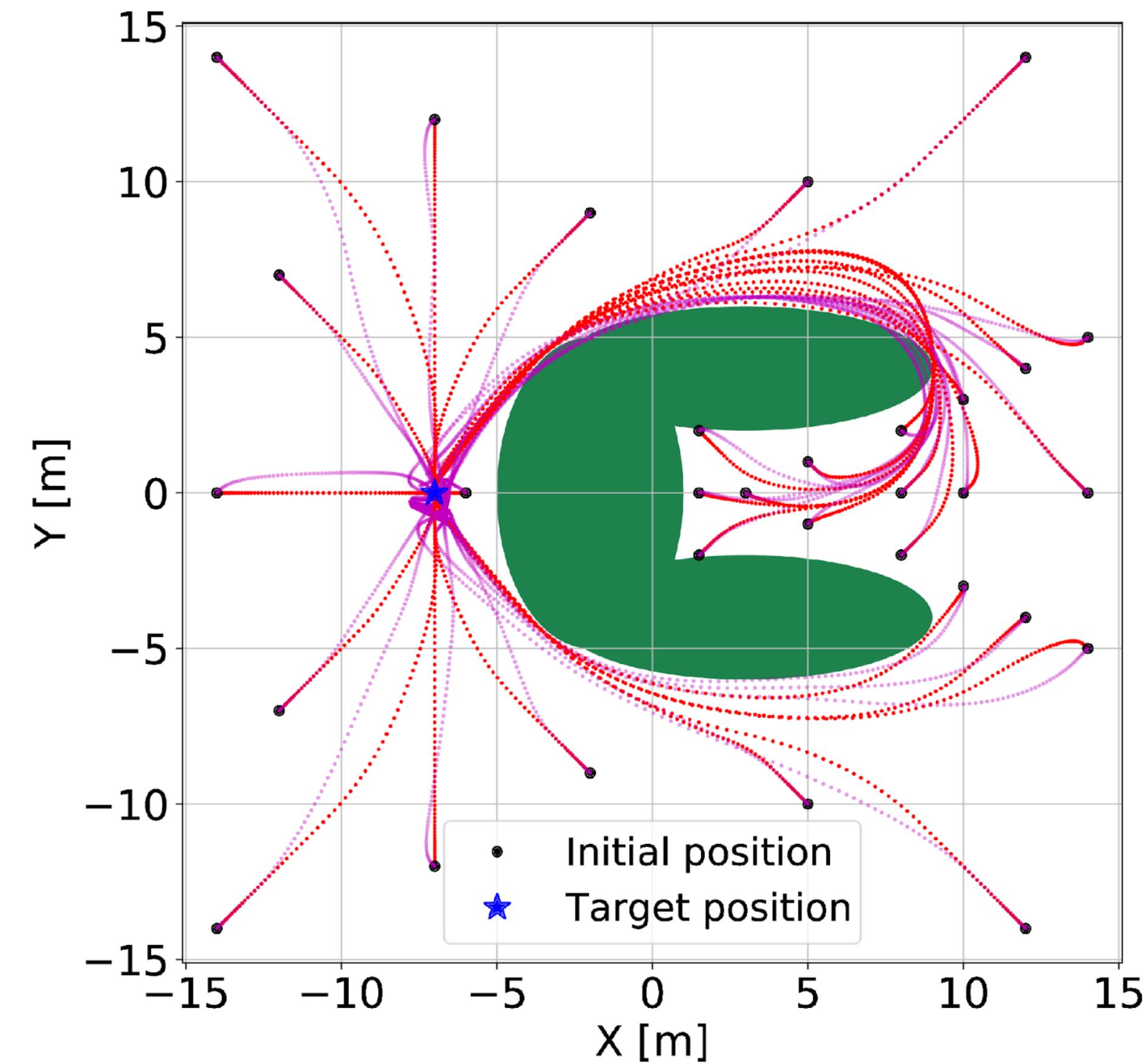
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... Wierstra, D. (2015). Continuous control with deep reinforcement learning. In *Foundations and Trends in Machine Learning*

CACTO



Results

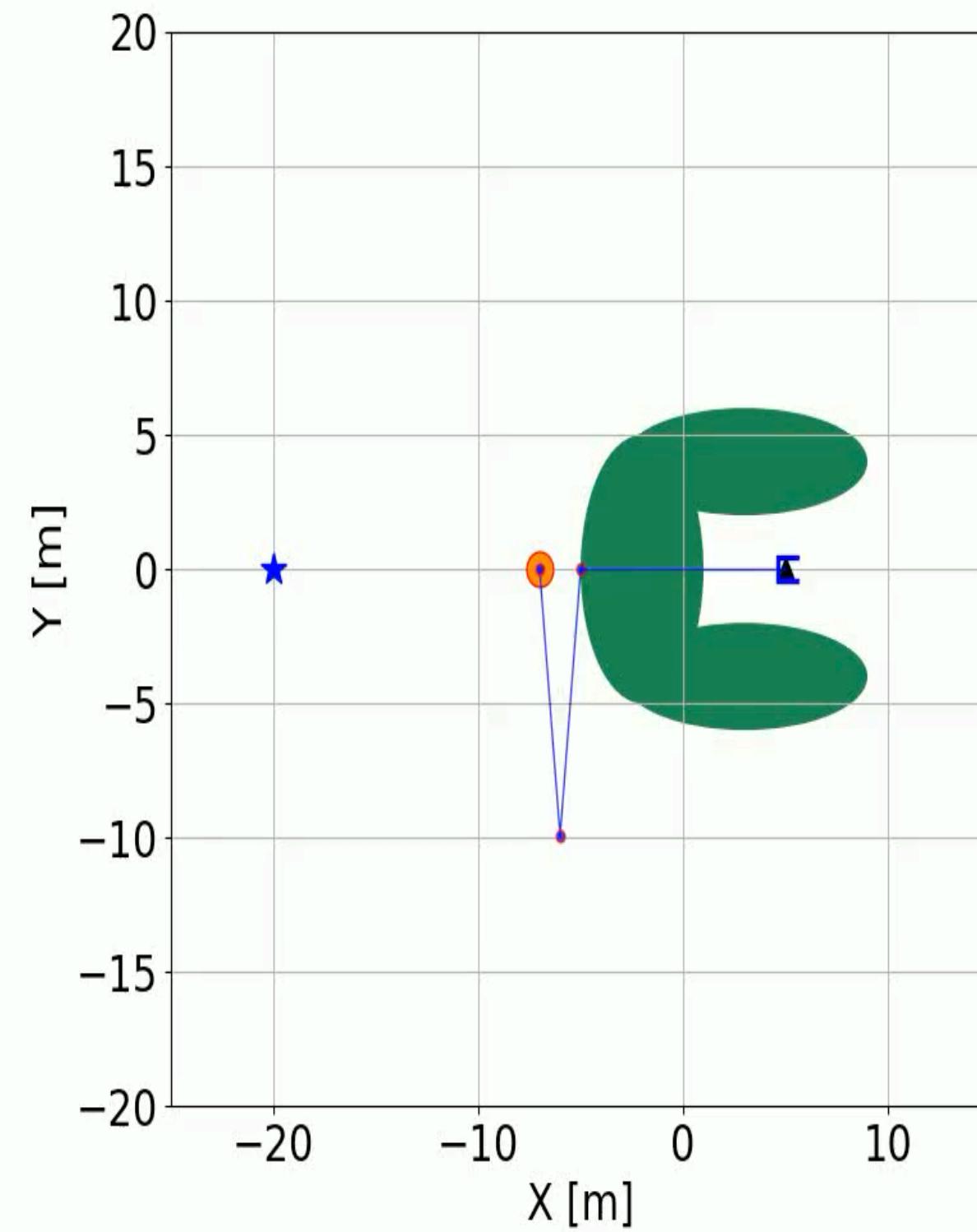
Task: find shortest path to target using low control effort and avoiding obstacles



Systems: 2D single/double integrator, 6D car model, 3-joint manipulator

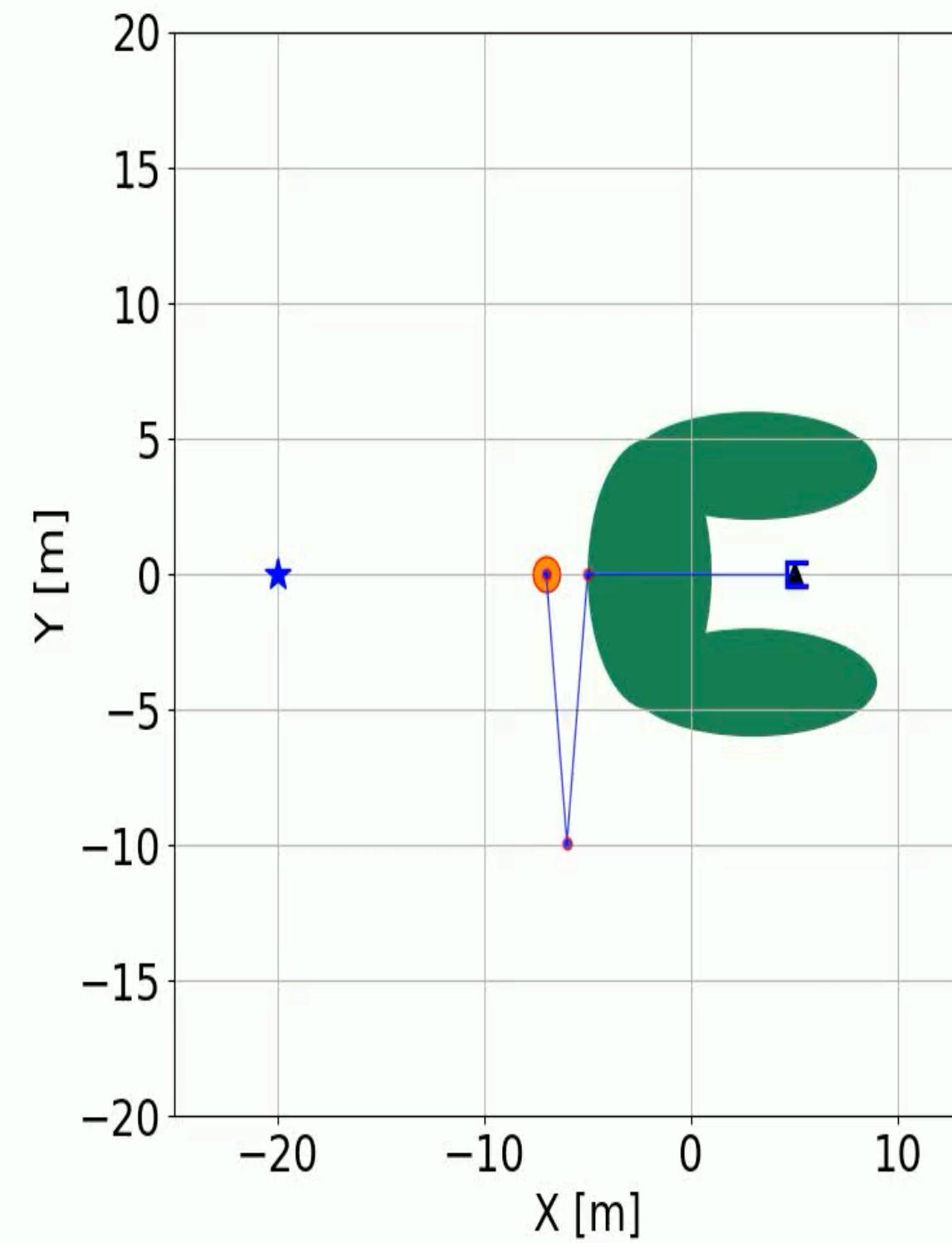
Results: 3-DoF Manipulator

Initial Conditions
warm-start



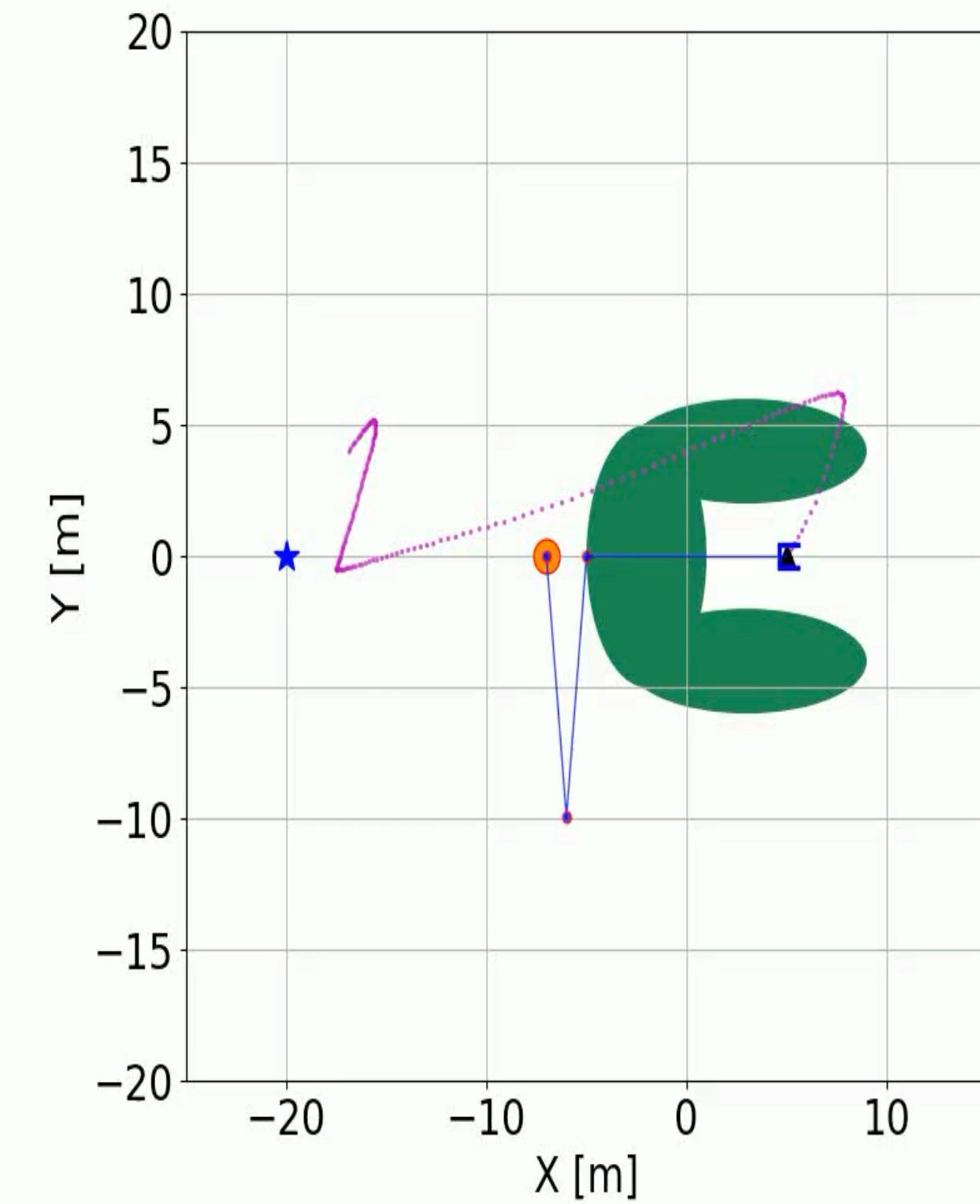
Cost = 70800

Random
warm-start



Cost = 88647

CACTO
warm-start



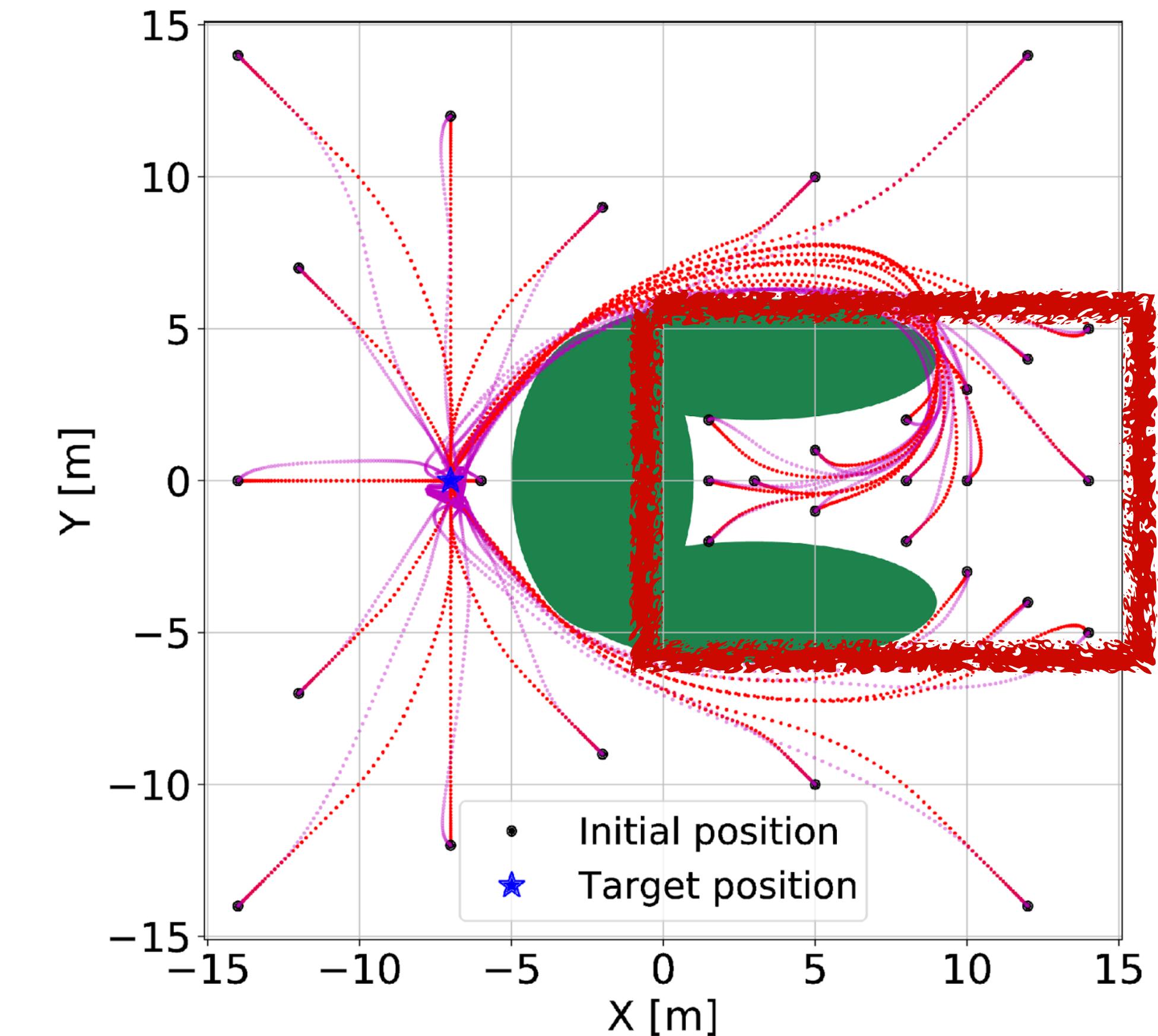
Cost = -145875

Comparison: CACTO vs TO

% of times TO finds better solution if warm-started with CACTO rather than:

- Random values
- Initial conditions (ICS) for states, zero for other variables

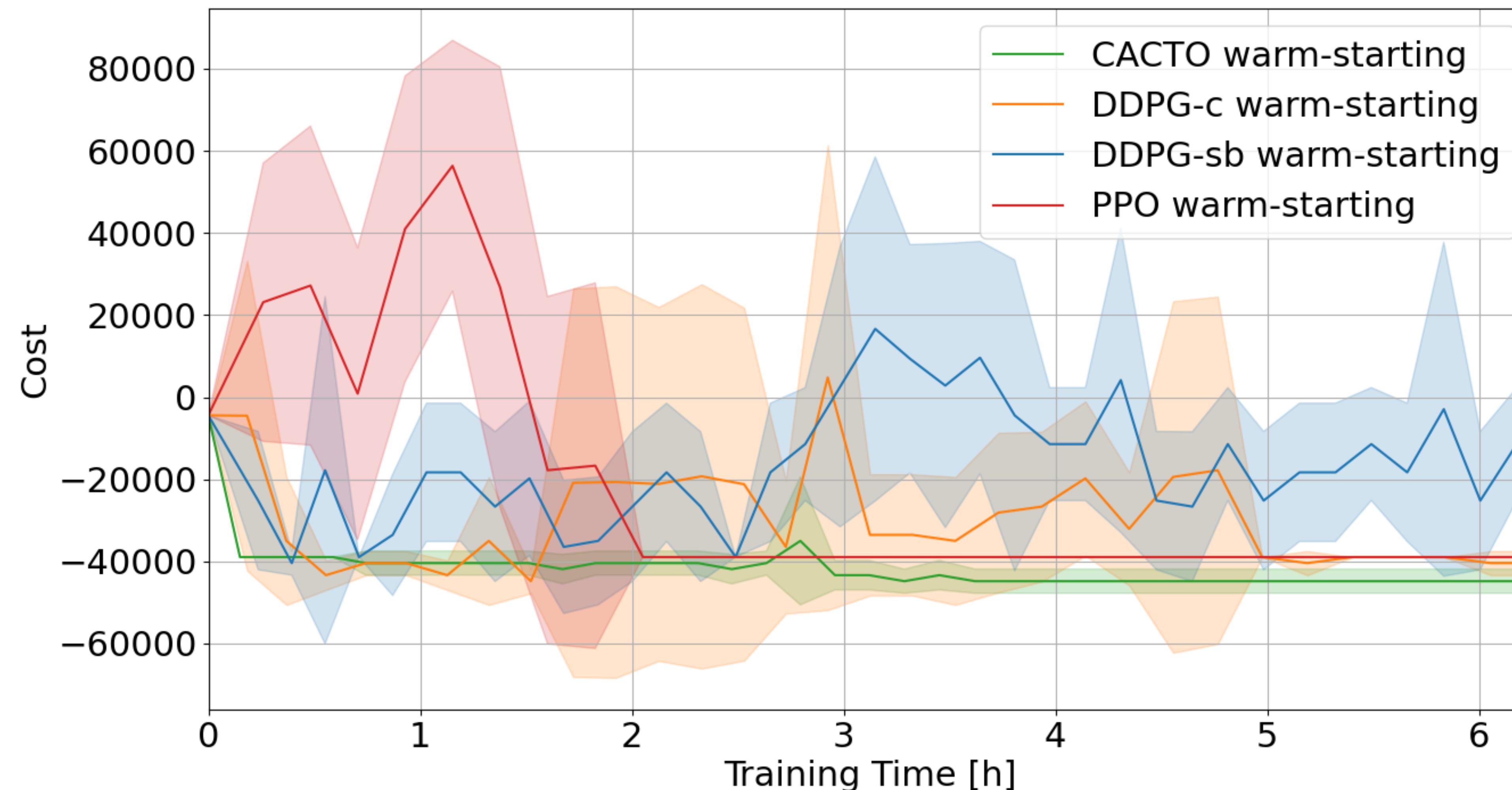
System	Hard Region	
	CACTO < (\leq) Random	CACTO < (\leq) ICS
2D Single Integrator	99.1% (99.1%)	92% (99.1%)
2D Double Integrator	99.9% (99.9%)	92% (99.1%)
Car	100% (100%)	92.9% (100%)
Manipulator	87.5% (87.5%)	100% (100%)



2D Double Integrator - CACTO warm-start

Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies



Conclusions

- TO guides the RL exploration making it sample efficient
- Global convergence proof for discrete-space version of CACTO

Recent extension

- Improve data efficiency leveraging derivative of Value function [2]

Future work

- Bias initial episode state to improve data efficiency
- Parallelize on GPUs
- Handle non-differentiable dynamics

Safe and Efficient robot control

Combining learning and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

Receding-Constraint Model Predictive Control

Gianni Lunardi
Asia La Rocca
Matteo Saveriano
Andrea Del Prete

Why Safety?

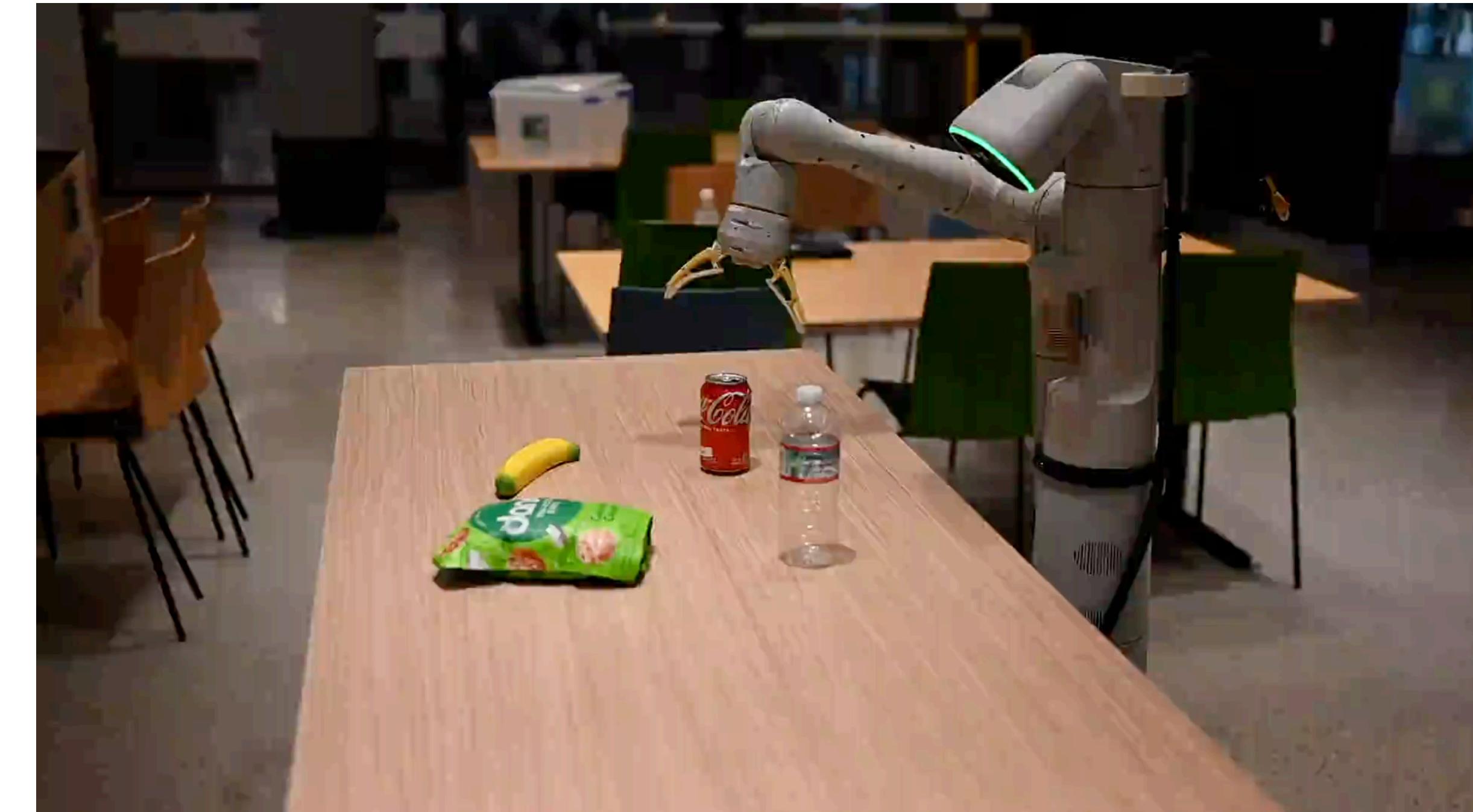
Today

Human-Robot Collaboration in Industry



Tomorrow

Black-box Data-Driven Control Policies



Zitkovich, Brianna, et al. "Rt-2: Vision-language-action models transfer web knowledge to robotic control." Conference on Robot Learning. PMLR, 2023.

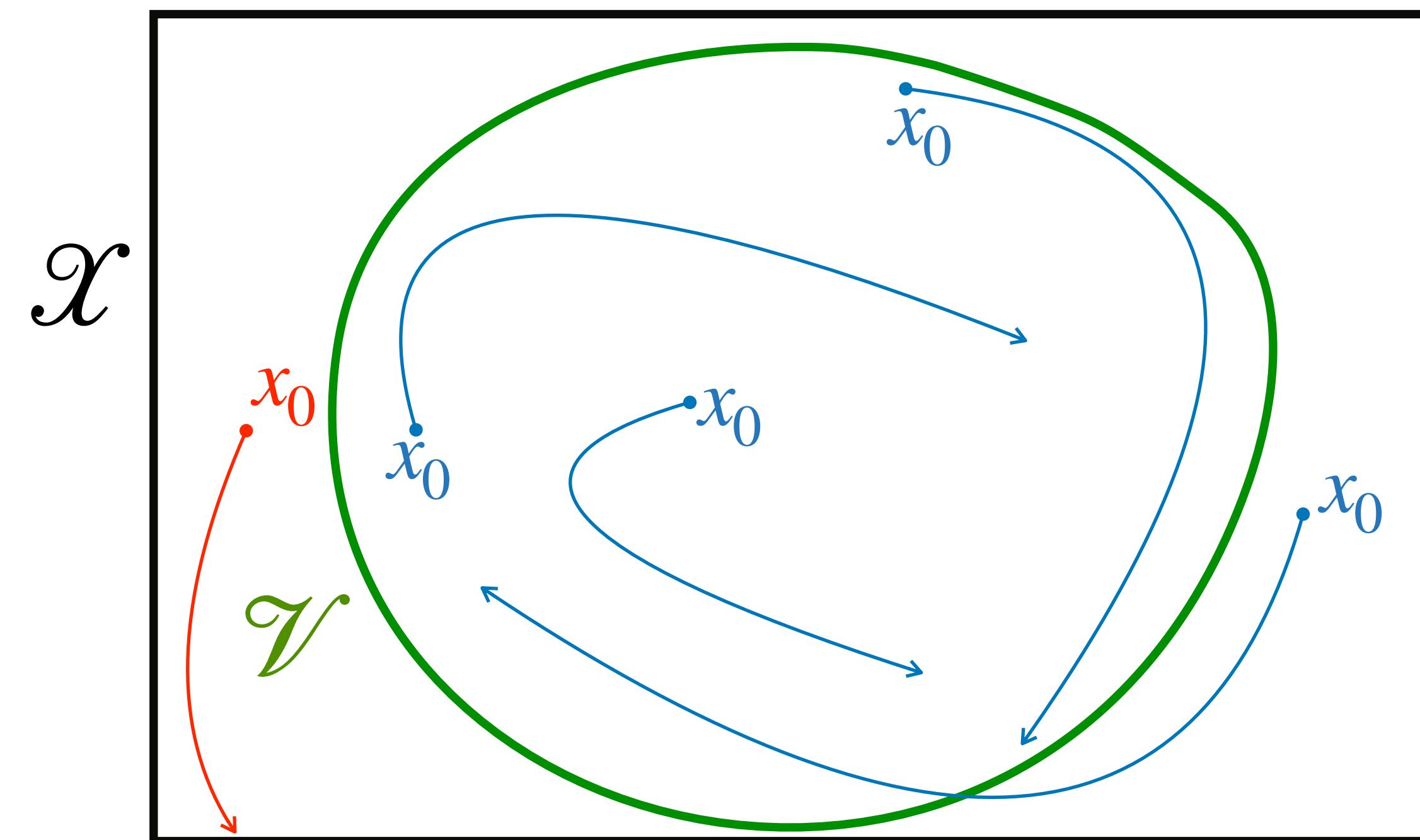
Control Invariant Sets

Constrained **discrete-time** dynamical system:

$$x_{i+1} = f(x_i, u_i) \quad x \in \mathcal{X}, \quad u \in \mathcal{U}$$

\mathcal{V} is a **control invariant** set

Once x is in \mathcal{V} , it **can remain** in \mathcal{V}



Recursive Feasibility

Model Predictive Control (MPC)

Using a CIS \mathcal{V} as terminal set ensures recursive feasibility in MPC

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && x_N \in \hat{\mathcal{V}} \end{aligned}$$

What if the terminal set is an approximation of a CIS $\hat{\mathcal{V}} \approx \mathcal{V}$?

MPC problem can become unfeasible using $\hat{\mathcal{V}}$ instead of \mathcal{V} !

Idea #1: Safe Abort

Ensuring Safety

- Assume $\hat{\mathcal{V}} \subseteq \mathcal{V}$ = N-step backward reachable set of equilibrium states
 - \rightarrow Even if $\hat{\mathcal{V}}$ is not a CIS, any state in $\hat{\mathcal{V}}$ is “safe”
- **Safe Abort:**
 - If MPC problem becomes **unfeasible**
 - Find (and follow) trajectory that:
 - starts from last predicted state in $\hat{\mathcal{V}}$
 - reaches an **equilibrium** state
 - Such a trajectory is **guaranteed** to exist

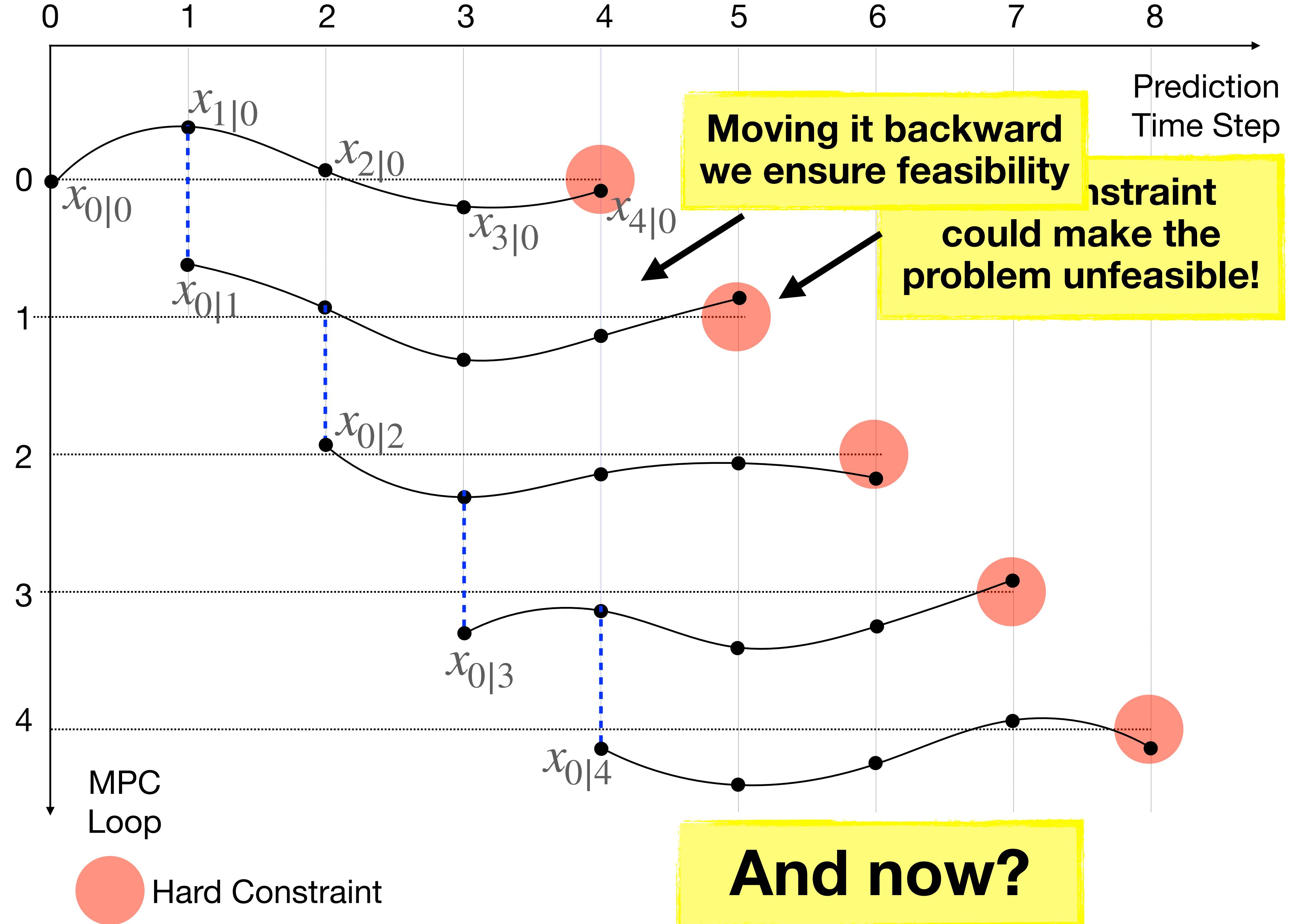
Nice! This ensures **SAFETY**.

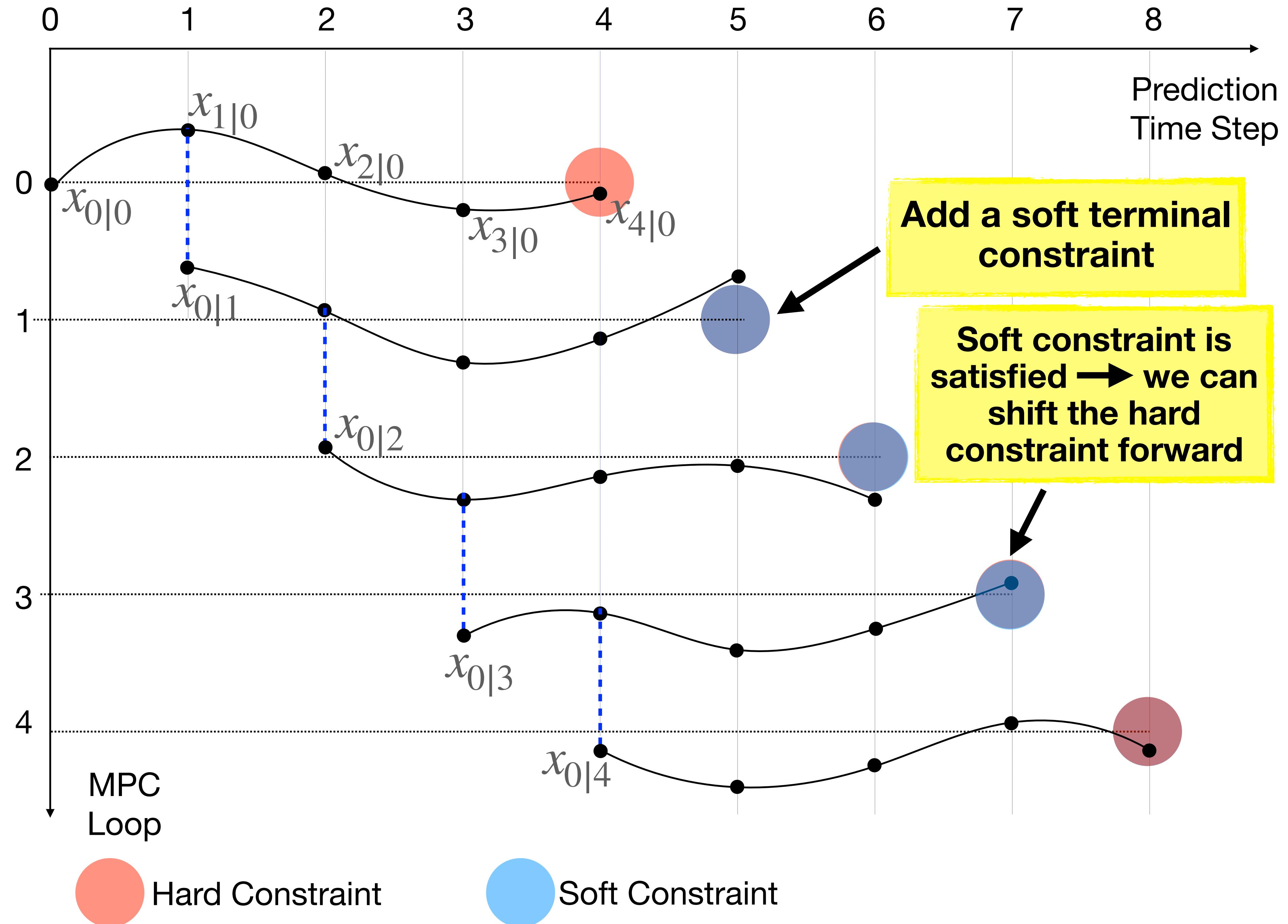
Can we also ensure
RECURSIVE FEASIBILITY?

Idea #2: Receding Constraint

Ensuring Recursive Feasibility

- **Observation**
 - Having the **terminal** state in $\hat{\mathcal{V}}$ is not necessary to ensure safety
 - Having **any future state** in $\hat{\mathcal{V}}$ would be sufficient
- **Idea**
 - Adapt online the **time step** for which we constrain the state in $\hat{\mathcal{V}}$





Simulation Results

- Comparing **5 MPC formulations**
- **3 DoF** robot manipulator
- **Acados** software library
- Setpoint regulation task
- 100 simulations from random initial joint configurations
- Horizon N=35 to ensure **computation time < dt** (5 ms)
- <https://github.com/idra-lab/safe-mpc>

Results

Safety Margin 2%

MPC Formulation	# Tasks Completed	# Tasks Safely Aborted	# Tasks Failed
Naive	69	-	31
Soft Terminal	69	-	31
Soft Terminal with Abort	70	11	19
Hard Terminal with Abort	70	8	22
Receding Constraint	77	18	5

Can we do better?

Results

Safety Margin 10%

MPC Formulation	# Tasks Completed	# Tasks Safely Aborted	# Tasks Failed
Naive	69	-	31
Soft Terminal	69	-	31
Soft Terminal with Abort	70	22	8
Hard Terminal with Abort	70	21	9
Receding Constraint	77	20	3

Cost & Computation Time

Safety Margin 10%

MPC Formulation	Cost Increase	Computation Times (99-Percentile)	
		MPC [ms]	Safe Abort [ms]
Naive	0%	3.8	-
Soft Terminal	0.05%	5.5	-
Soft Terminal with Abort	0.04%	3.7	130
Hard Terminal with Abort	0.04%	3.9	100
Receding Constraint	0.02%	3.9	80

Conclusions

- Novel MPC formulation ensuring
 - **Recursive feasibility** under weaker conditions (N-Step CIS)
 - **Safety** under even weaker conditions (inner approx. of CIS)

On-going/future work

- Learn safe-abort **policy** to **warm-start** safe-abort OCP solver
- Hardware implementation
- Computation/**certification** of N-Step CIS and inner approx. of CIS
- Handle dynamics **uncertainties**/**obstacles**
- Application as **safety filter** for RL policies

Take-Home Message

Globally Optimal and Safe Robot Control

- Using ideas from TO we can make RL efficient and safe
 - Use **dynamics derivatives** to guide RL exploration (CACTO)
 - Use **Control Invariance** to make control (RL) safe

Current challenges

- algorithms to compute $\hat{\mathcal{V}}$ **do not scale** and cannot **certify** set properties (e.g. N-Step Control Invariance)
- dynamics derivatives are ill-defined in **contact-rich** tasks

Safe and Efficient Robot Control

Combining **learning** and trajectory optimization

- [1] Grandesso, Alboni, Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global Optimality. IEEE Robotics and Automation Letters (RAL)
- [2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with Trajectory Optimization. In Learning for Dynamics and Control Conference (L4DC)
- [3] Lunardi, La Rocca, Saveriano, Del Prete, (2024). Receding-Constraint Model Predictive Control using a Learned Approximate Control-Invariant Set. In IEEE International Conference on Robotics and Automation (ICRA)
- [4] La Rocca, Saveriano, Del Prete (2023). VBOC: Learning the Viability Boundary of a Robot Manipulator using Optimal Control. IEEE Robotics and Automation Letters (RAL)

Andrea Del Prete

UNIVERSITY
OF TRENTO