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Is there anything RL cannot do?

Is Trajectory Optimization bound to die?
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The i1Issues with RL

My two cents
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Can we use ideas from Trajectory Optimization
to make RL safe and efficient?






Why Safety?
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Safety via Control Invariant Sets

Constrained discrete-time dynamical system:

X = f(x, u) xed, ue
7" C X is a control invariant set €= QOnce x is in 7/, it can remain in
X0




Recursive Feasibility
Model Predictive Control (MPC)

Using a CIS 7 as terminal set ensures recursive feasibility in MPC

N-1
minimize Z bi(xi,u;) +€n(TN)
{zi}d Auwite " TG

1 =0...N —1
1 =0...N —1

What if the terminal set is an MPC problem can become
approximation ofaCIS 7" ~ 7" ? p unfeasible using 7 instead of 7!



Beyond Control Invariant Sets

e CIS are unknown for nonlinear systems

 Numerical approximation techniques exist, however:
* They are computationally demanding (curse of dimensionality)
* A numerical approximation of a CIS is not a CIS

 — all safety guarantees are lost!

f Do we really need Contvrantt
“L_: to ensure safety’? %




N-Step Control Invariant Set

. 7 is an N-Step CIS Iiff:

» For every X, € 7 it is X
possible to have x;, € 7 for
some k € [1,N]

» \Weaker condition than classic From x; it is not possible
control invariance to remainin 7/, butitis
possible to come back in
* Possible to guarantee safety 7" in 2 steps!

with novel MPC schemes
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N-Step Control Invariant Sets

Double integrator - Circular shape
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N-Step Control Invariant Set

Double integrator - Rectangular shape
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| The exists no Control
| Invariant Set with a |

rectangular shape! |
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could make the
/ problem unfeasible!

MPC
Loop

Hard Constraint And nOW?
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Prediction
Time Step

Add a soft terminal
constraint

Soft constraint is
satisfied —» we can
shift the hard

constraint forward

/

MPC
Loop
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Parallel-Constraint MPC

» Solve in parallel N instances of this problem, one for each value of p € |1,N]:

N-—1
minimize Z bi(xi,u;) +ln(xN)
{xi}g)va{ui}év_l i—0

subject to xg = Tinit
$i_|_1:f(2177;,u7;) 1 =0...N —1
1 =0...N —1




Simulation Results

 Comparing several MPC formulations
e 4 DoF Z1 robot manipulator

 Acados software library

. Safe set 7 represented with neural
network

e 500 simulations from random initial
configurations

e Max horizon N=45 to ensure
computation time < dt (5 ms)

» https://qgithub.com/idra-lab/safe-mpc



https://github.com/idra-lab/safe-mpc

Simulation Results - Receding
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Simulation Results - Receding
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Simulation Results - Parallel

3-DoF manipulator
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Computation Time




Conclusions

* Novel MPC formulations ensuring
* Recursive feasibility under weaker conditions (N-Step CIS)
o Safety under even weaker conditions (inner approx. of CIS)
On-going/future work
 Hardware implementation
 Computation/certification of N-Step CIS
 Handle dynamics uncertainties/obstacles

* Application as safety filter for RL policies
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Reinforcement Learning V¥ Trajectory Optimization
WITH?

,cz:(gllz?(t)/o [ (z(t),u(t))dt + s (z(T))

s. t. z(t) = f(z(t),u(t),t) Vtel0,T]
CIJ(O) — Ly
Umin < U(t) < Umae  VEE [0, T

Reinforcement Learning Trajectory Optimization
-4 Less prone to poor local minima -+ Data efficient (fast)
-+ Derivative free -4 Exploits knowledge of dynamics derivatives
=4+ Policy as output == Can get stuck in poor local minima

== Poor data efficiency (slow) m= [rgjectory as output



Deep Deterministic Policy Gradient (DDPG)
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Lillicrap, 1. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, 1., Tassa, Y., ... Wierstra, D. (2015). Continuous
control with deep reinforcement learning. In Foundations and Trends in Machine Learning




CACTO

Trajectory Optimization

(TO)
Warm-start 71
> L.
minimize Y (g, ur) + lr(xT)
r,ucld 15
s.t. Tri1 = f(xg, ur)
X, U
( v )
Cost-to-go computation
(xta V: ajt—l—L)
Y
Sample mini-batch
- Replay buffer

[1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global
Optimality. IEEE Robotics and Automation Letters



Results

Task: find shortest path to target using low control effort and avoiding obstacles
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Systems: 2D single/double integrator, 6D car model, 3-joint manipulator
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Results: 3-DoF Manipulator

Initial Conditions

warm-start
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Comparison: CACTOvs TO

% of times TO finds better solution if warm-started with
CACTO rather than: 15

\.
e Random values
- o : 10-
e |nitial conditions (ICS) for states, zero for other variables
.
§ Hard Region § T
System N . - \Y
CACTO < (<) Random  CACTO < (g) ICS - 0 =
2D Single Integrator 99.1% (99.1%) 92% (99.1%) Nz LY
—~10- N
2D Double Integrator 99.9% (99.9%) 92% (99.1%) | Initial position
S * Target position AN
—15- ' ' | | I ,
Car 100% (100%) 92.9% (100%) S-S s 0 2 1013

2D Double Integrator - CACTO warm-start
Manipulator 87.5% (87.5%) 100% (100%)



Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies
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1D Example

T—1
mir)lg’rlr}ize l;) c(x) + wy||ug] 7] + e(zr)

subjectto xpi1 =xp +Atur Vk=0,...,7T —1

L0 = Linit

6 m—— (COSt C(X)

~1 0 1 2
State x



Trajectory Optimization

With naive initial guess

m—— COSt c(X
Control u(x,t=0)

—2 -1 0 1
State X
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Trajectory Optimization

With naive initial guess
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m— (COSt C(X)
> Control u(x,t=0)
/ < Value V(x,t=0)
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State X




First Iteration



Learning the critic

The Value function is discontinuous so the network approximates it.
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Supervised Learning of the actor

At the first iteration we pre-train the actor to imitate the control inputs of TO.

8 x uT0
running cost
0 — Actor

State x



Learning the actor minimizing Q

We improve the actor by minimizing the Q function

— Actor
Actor pre-training

State x



Using the actor to warm-start TO

TO improves thanks to the initial guess of the actor
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Conclusions

e TO guides the RL exploration making it sample efficient

e Global convergence proof for discrete-space version of CACTO

Recent extension

e Improve data efficiency leveraging derivative of Value function [2]

Future work
e Bias initial episode state to improve data efficiency
e Parallelize on GPUs

e Handle non-differentiable dynamics

[2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with
Trajectory Optimization. In Learning for Dynamics and Control Conference (L4DC)



Take-Home Message
Globally Optimal and Safe Robot Control

* Using ideas from TO we can make RL efficient and safe
* Use dynamics derivatives to guide RL exploration (CACTO)

 Use novel safe sets to make control (RL) safe

Current challenges

e algorithms to compute 7" do not scale and cannot certify set
properties (e.g. N-Step Control Invariance)

 dynamics derivatives are ill-defined in contact-rich tasks
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