

Safe and Efficient robot control

Combining **learning** and trajectory optimization

Andrea Del Prete

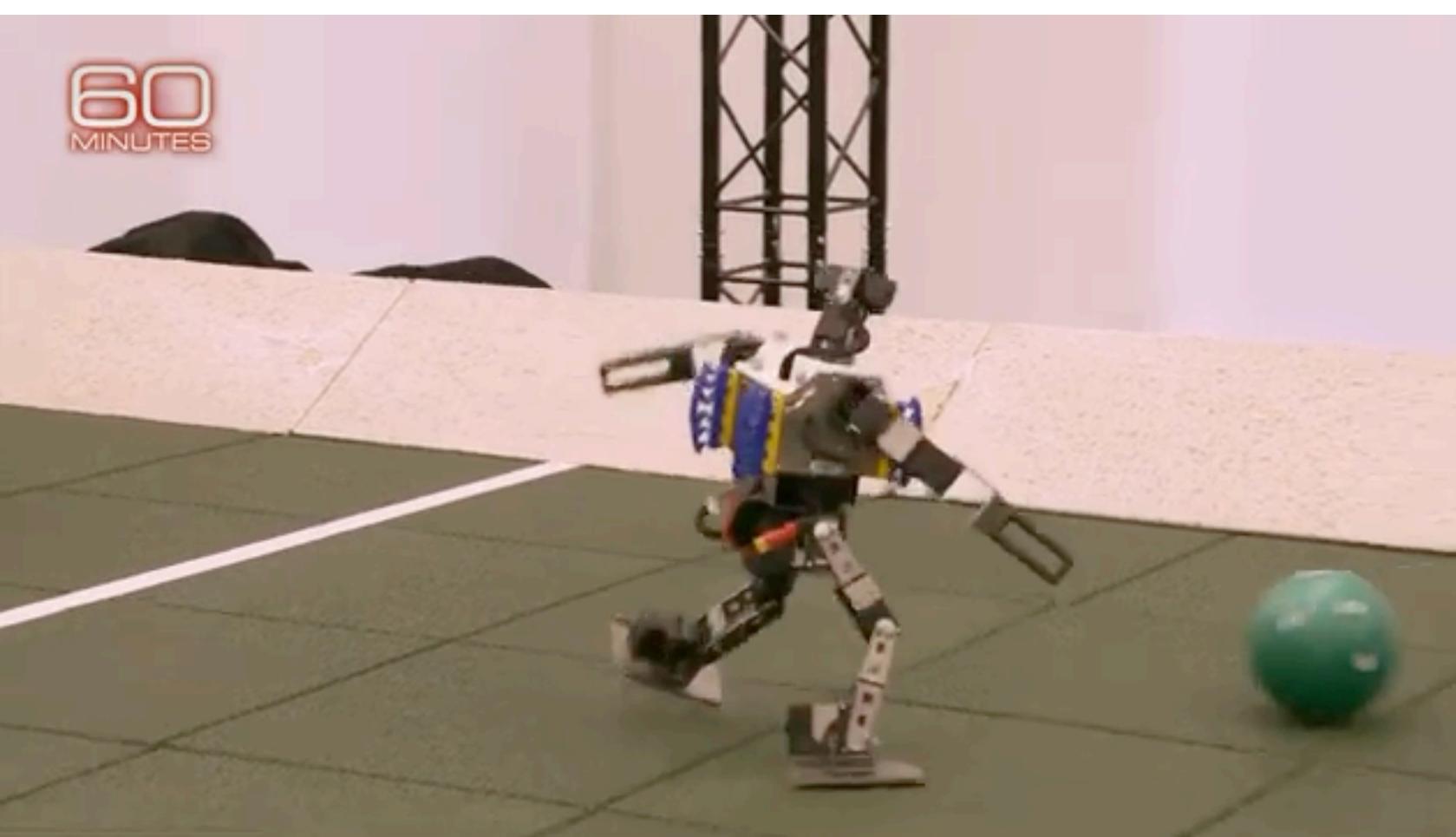
**UNIVERSITY
OF TRENTO**

Is there **anything** RL cannot do?

Is **Trajectory Optimization** bound to **die**?

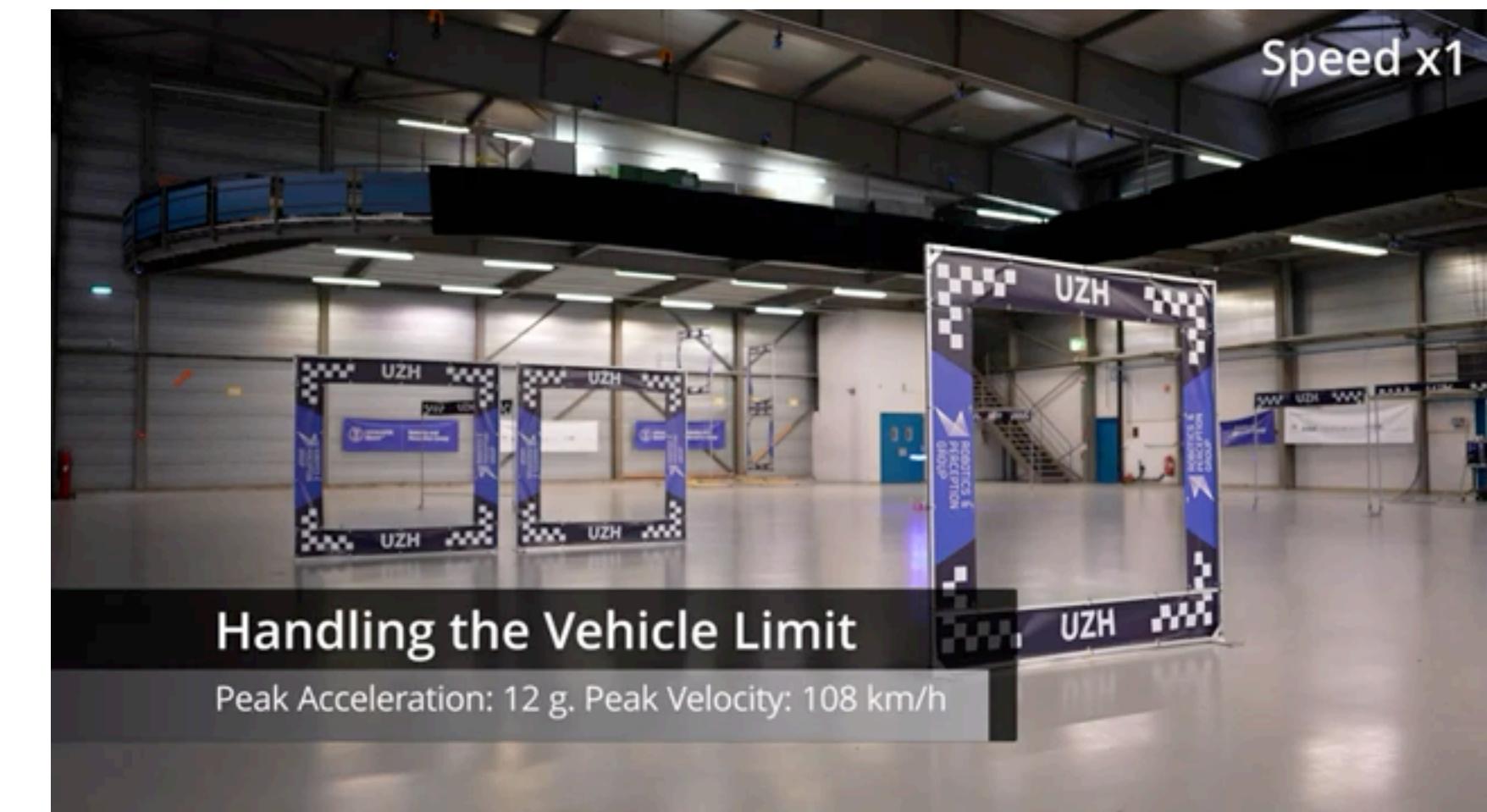
Lee, Hwangbo, Wellhausen, Koltun, Hutter (2020). Learning quadrupedal locomotion over challenging terrain. *Science Robotics*

Learning



Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala, D., Wulfmeier, M., ... Heess, N. (2023). Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement

Learning



Song, Romero, Müller, Koltun, Scaramuzza, (2023). Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. *Science Robotics*

The **issues** with RL

My two cents

Poor **efficiency**

- Data efficiency
- Energy efficiency
- Time efficiency

Poor **safety**

- No explicit constraints
- No guarantees
- Safety-critical applications

Can we use ideas from **Trajectory Optimization** to make **RL** safe and efficient?

Safe and Efficient robot control

Combining learning and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

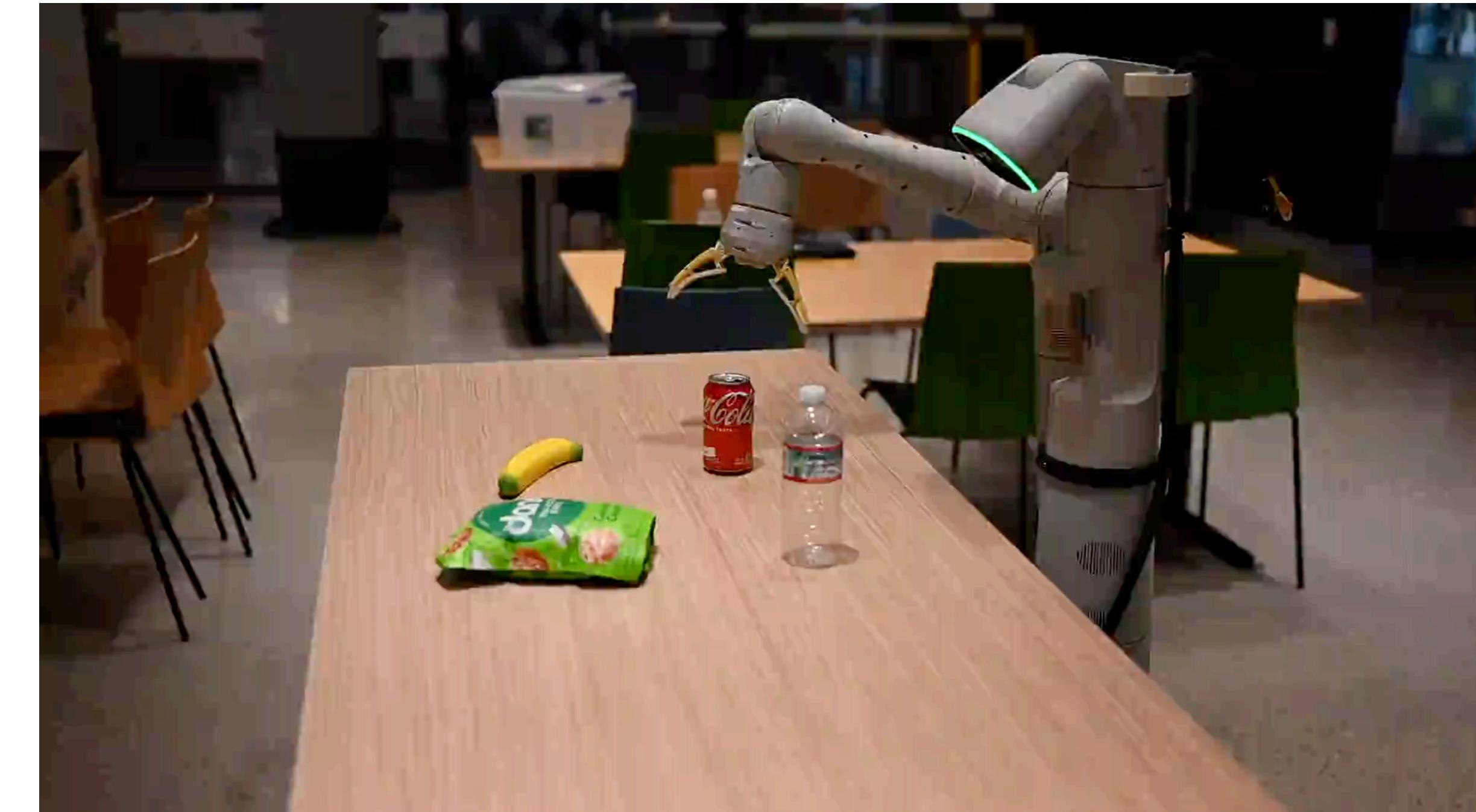
Why Safety?

Today

Human-Robot Collaboration in Industry

Tomorrow

Black-box Data-Driven Control Policies



Zitkovich, Brianna, et al. "Rt-2: Vision-language-action models transfer web knowledge to robotic control." Conference on Robot Learning. PMLR, 2023.

<https://www.therobotreport.com/manufacturing/ria-osha-robot-safety/>

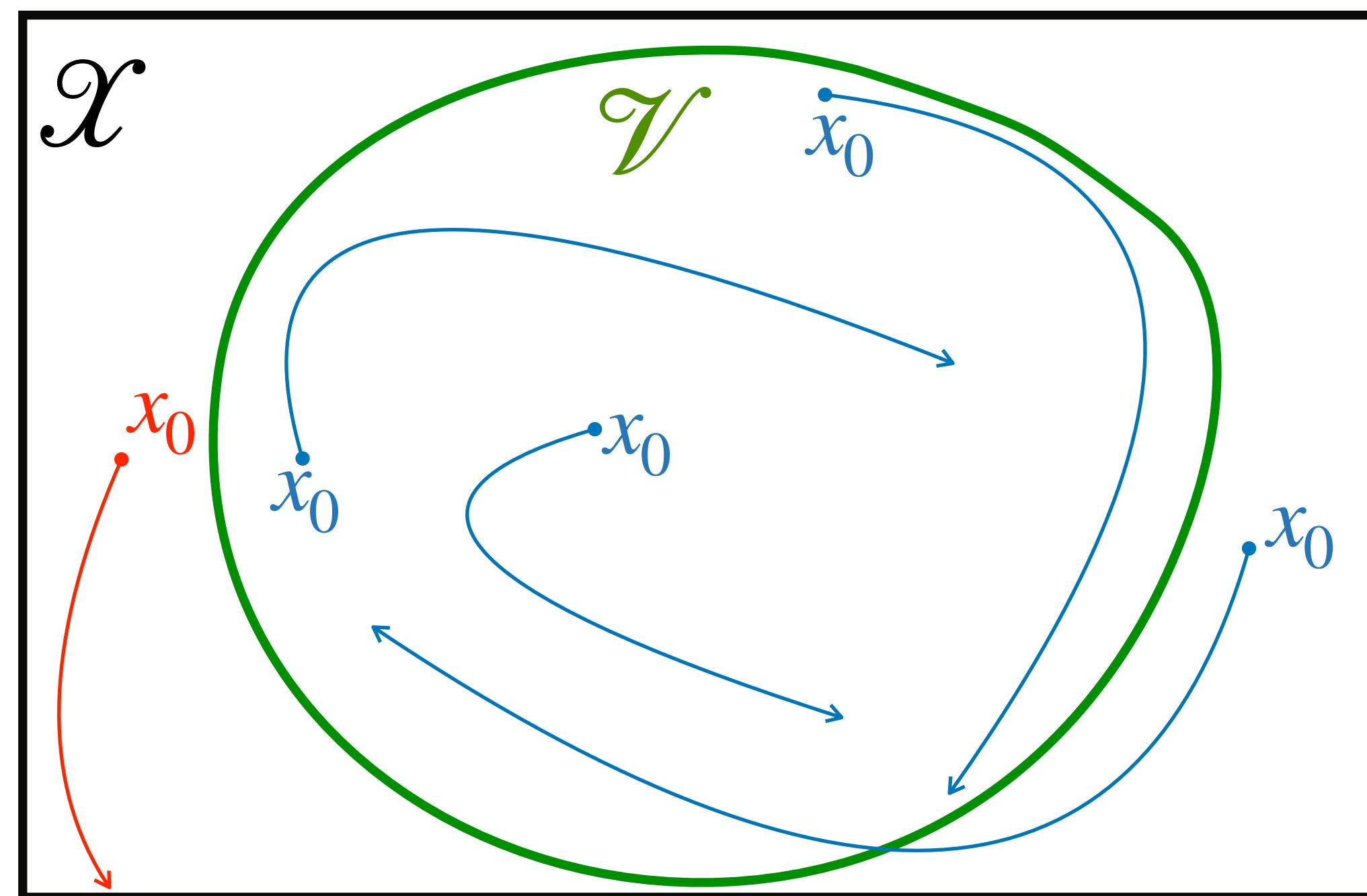
Safety via Control Invariant Sets

Constrained **discrete-time** dynamical system:

$$x_{i+1} = f(x_i, u_i) \quad x \in \mathcal{X}, \quad u \in \mathcal{U}$$

$\mathcal{V} \subseteq \mathcal{X}$ is a **control invariant** set

Once x is in \mathcal{V} , it **can remain** in \mathcal{V}



Recursive Feasibility

Model Predictive Control (MPC)

Using a CIS \mathcal{V} as terminal set ensures recursive feasibility in MPC

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && x_N \in \hat{\mathcal{V}} \end{aligned}$$

What if the terminal set is an approximation of a CIS $\hat{\mathcal{V}} \approx \mathcal{V}$?

MPC problem can become unfeasible using $\hat{\mathcal{V}}$ instead of \mathcal{V} !

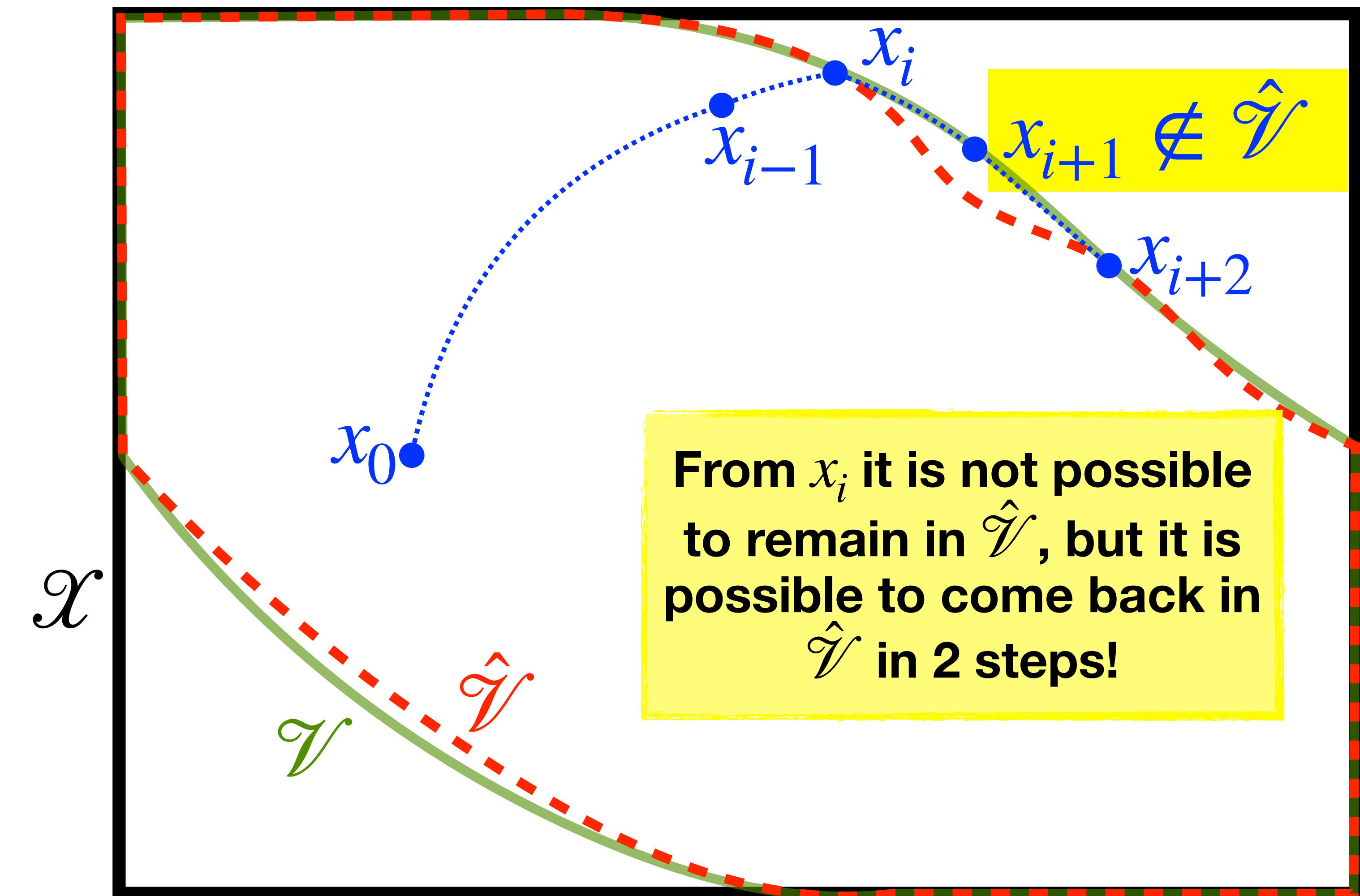
Beyond Control Invariant Sets

- CIS are **unknown** for nonlinear systems
- Numerical **approximation** techniques exist, however:
 - They are **computationally demanding** (curse of dimensionality)
 - A numerical approximation of a CIS is **not** a CIS
 - → **all safety guarantees are lost!**

**Do we really need Control Invariant Sets
to ensure safety?**

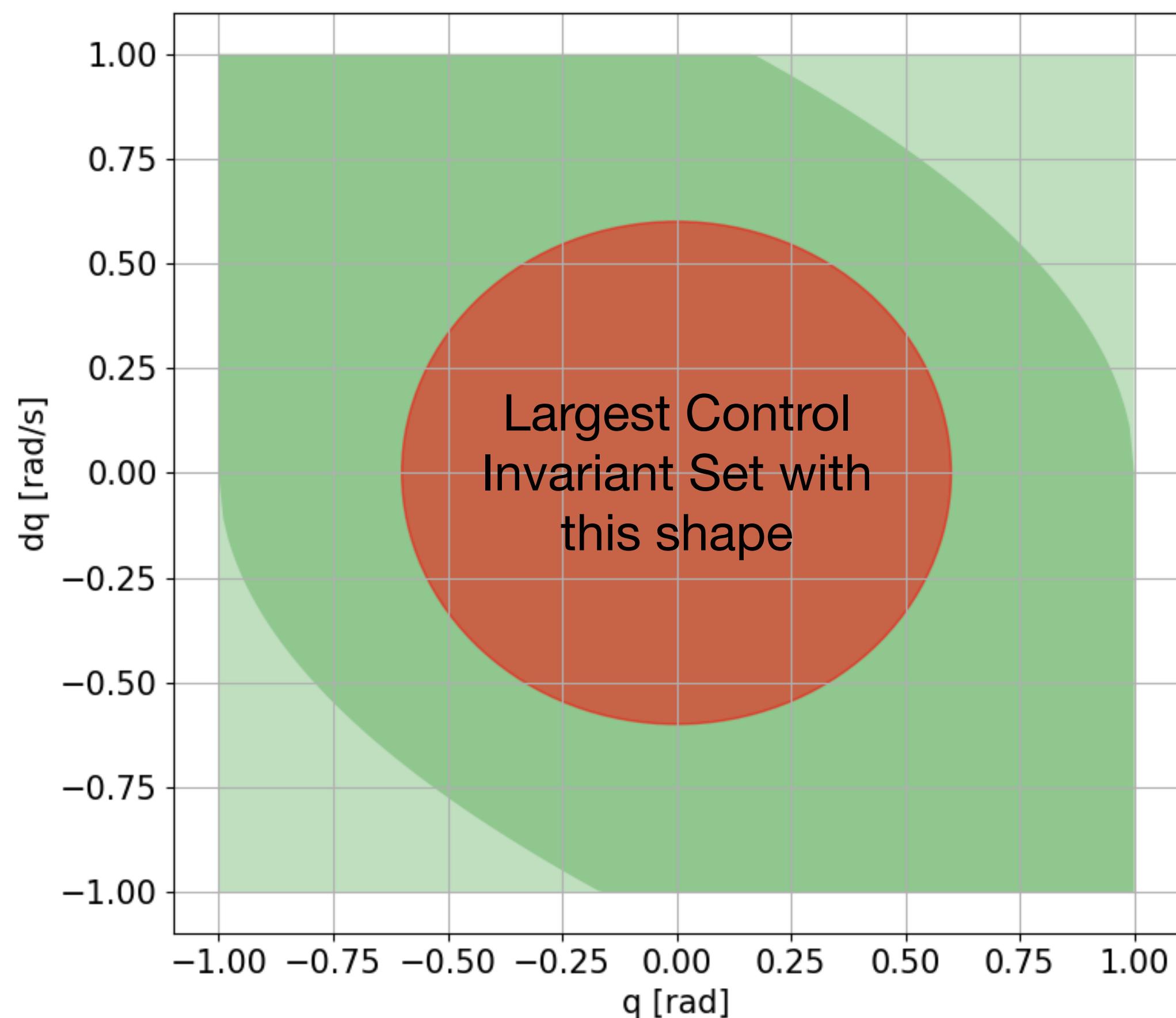
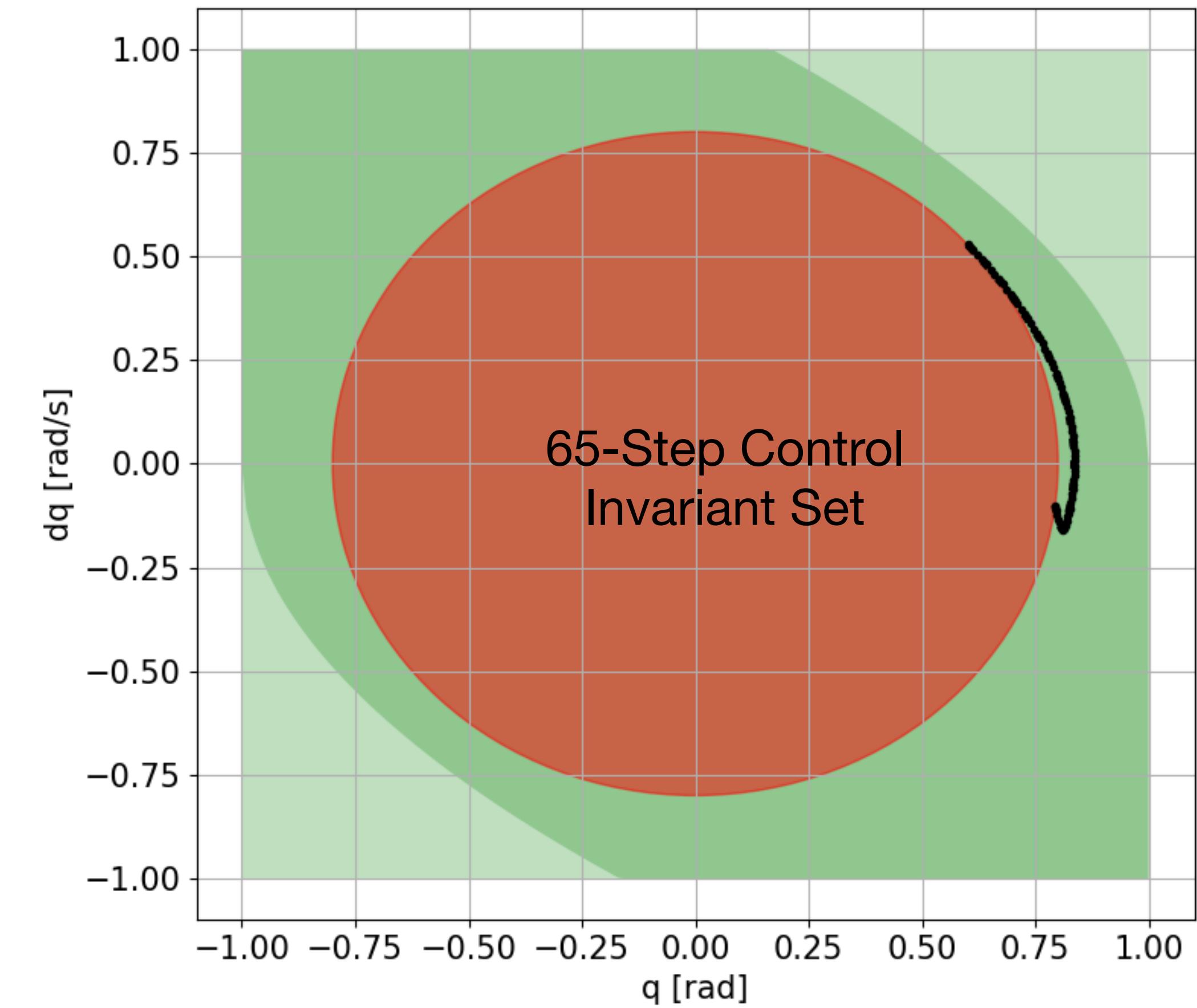
N-Step Control Invariant Set

- $\hat{\mathcal{V}}$ is an **N-Step CIS** iff:
 - For every $x_0 \in \hat{\mathcal{V}}$ it is possible to have $x_k \in \hat{\mathcal{V}}$ for some $k \in [1, N]$
- **Weaker** condition than classic control invariance
- Possible to guarantee safety with novel MPC schemes



N-Step Control Invariant Sets

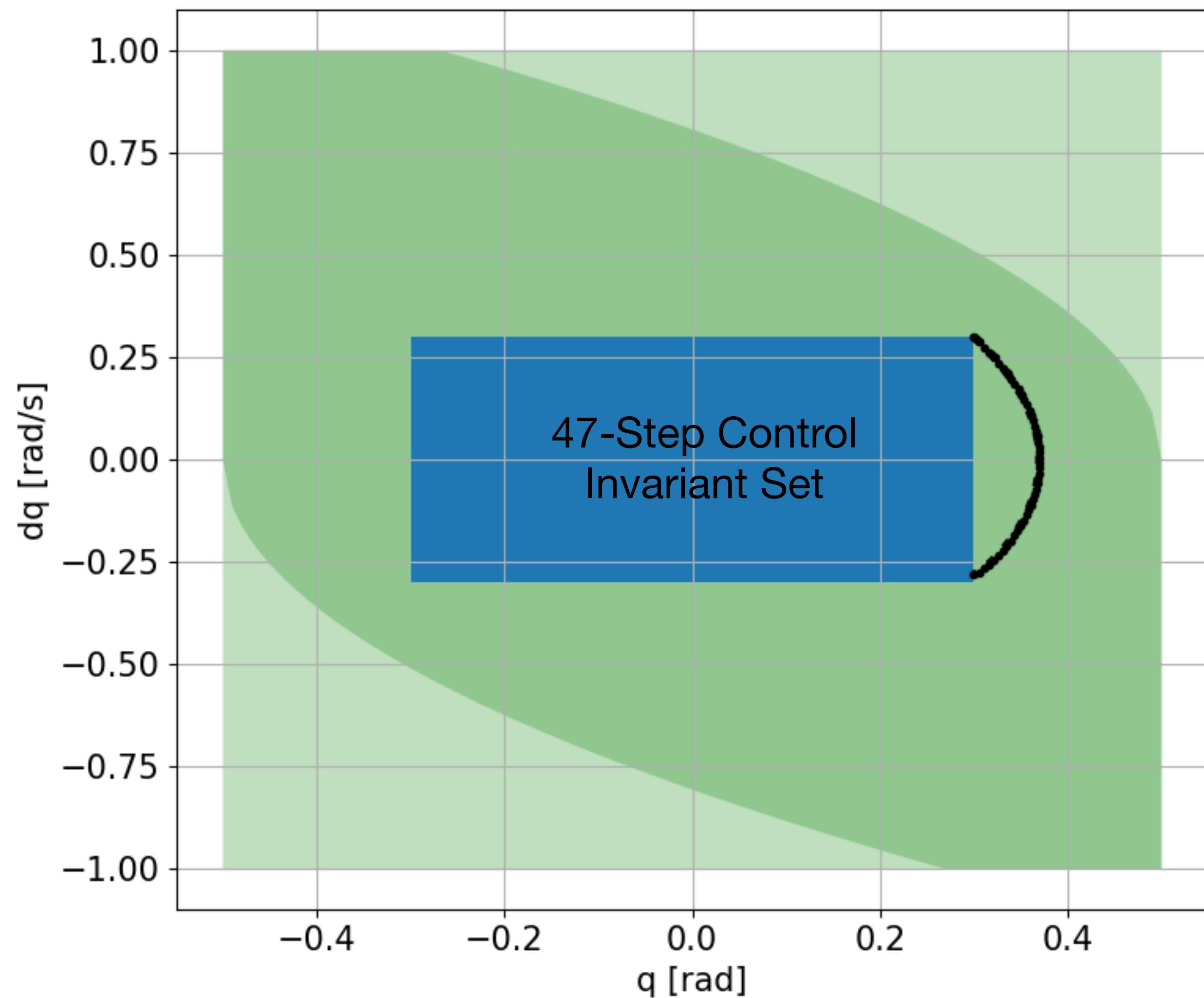
Double integrator - Circular shape



N-Step Control Invariant Set

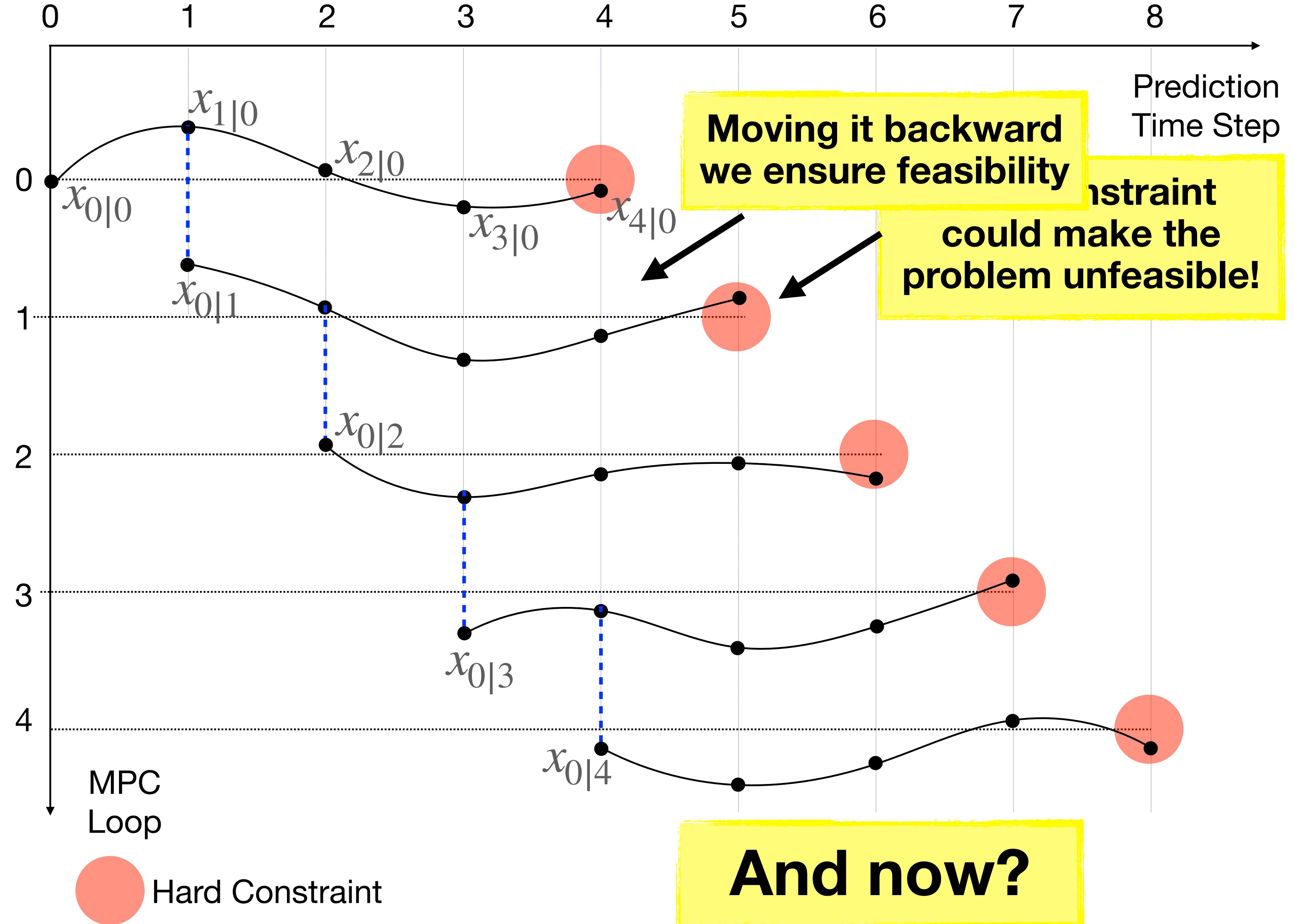
Double integrator - Rectangular shape

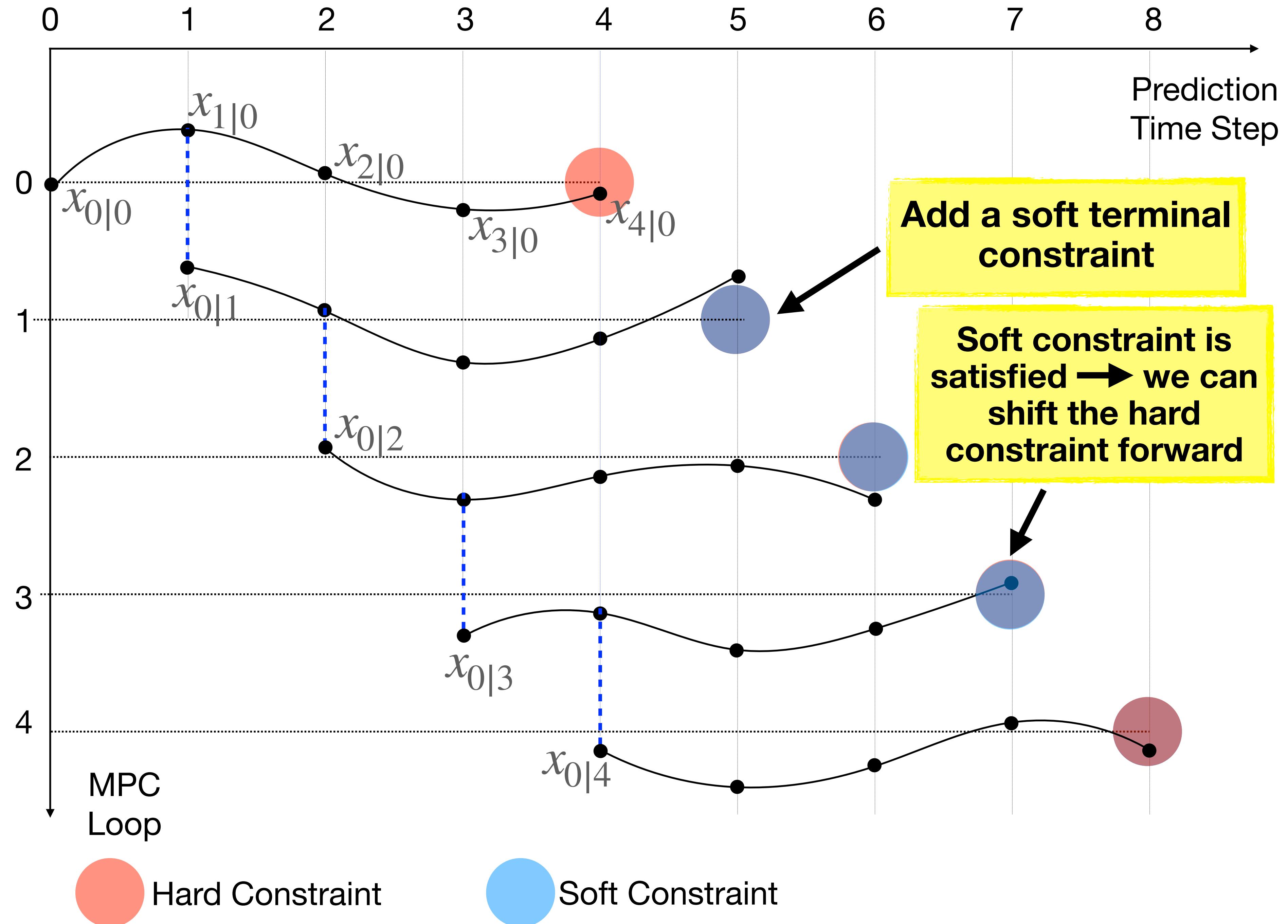
The exists no Control Invariant Set with a rectangular shape!



Receding-Constraint Model Predictive Control

Gianni Lunardi
Asia La Rocca
Matteo Saveriano
Andrea Del Prete





Parallel-Constraint Model Predictive Control

Elias Fontanari
Gianni Lunardi
Matteo Saveriano
Andrea Del Prete



Fontanari, Lunardi, Saveriano, Del Prete (2025). Parallel-Constraint Model Predictive Control: Exploiting Parallel Computation for improving safety. IEEE ICRA.

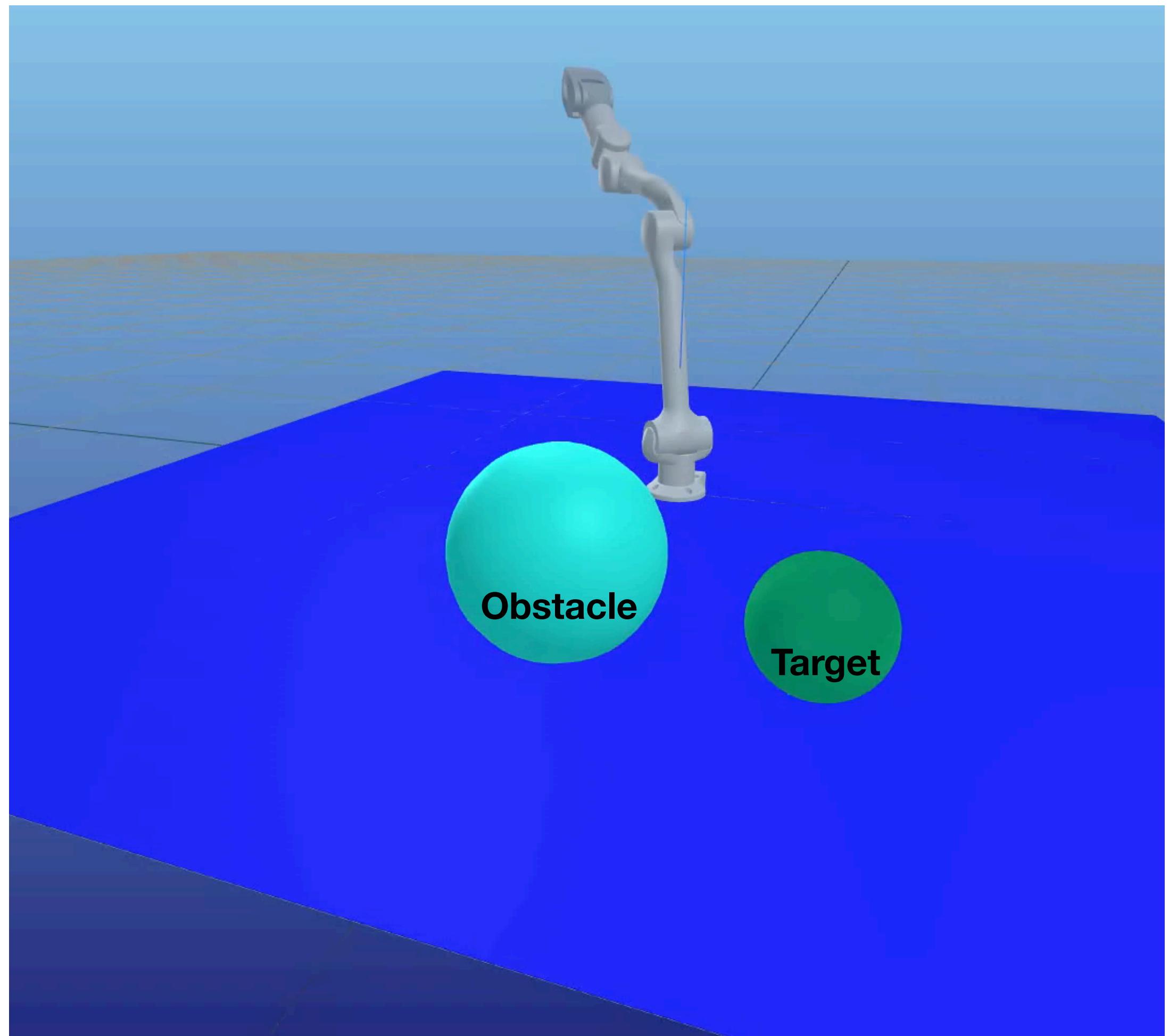
Parallel-Constraint MPC

- Solve **in parallel** N instances of this problem, one for each value of $p \in [1, N]$:

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && \boxed{x_p \in \hat{\mathcal{V}}} \end{aligned}$$

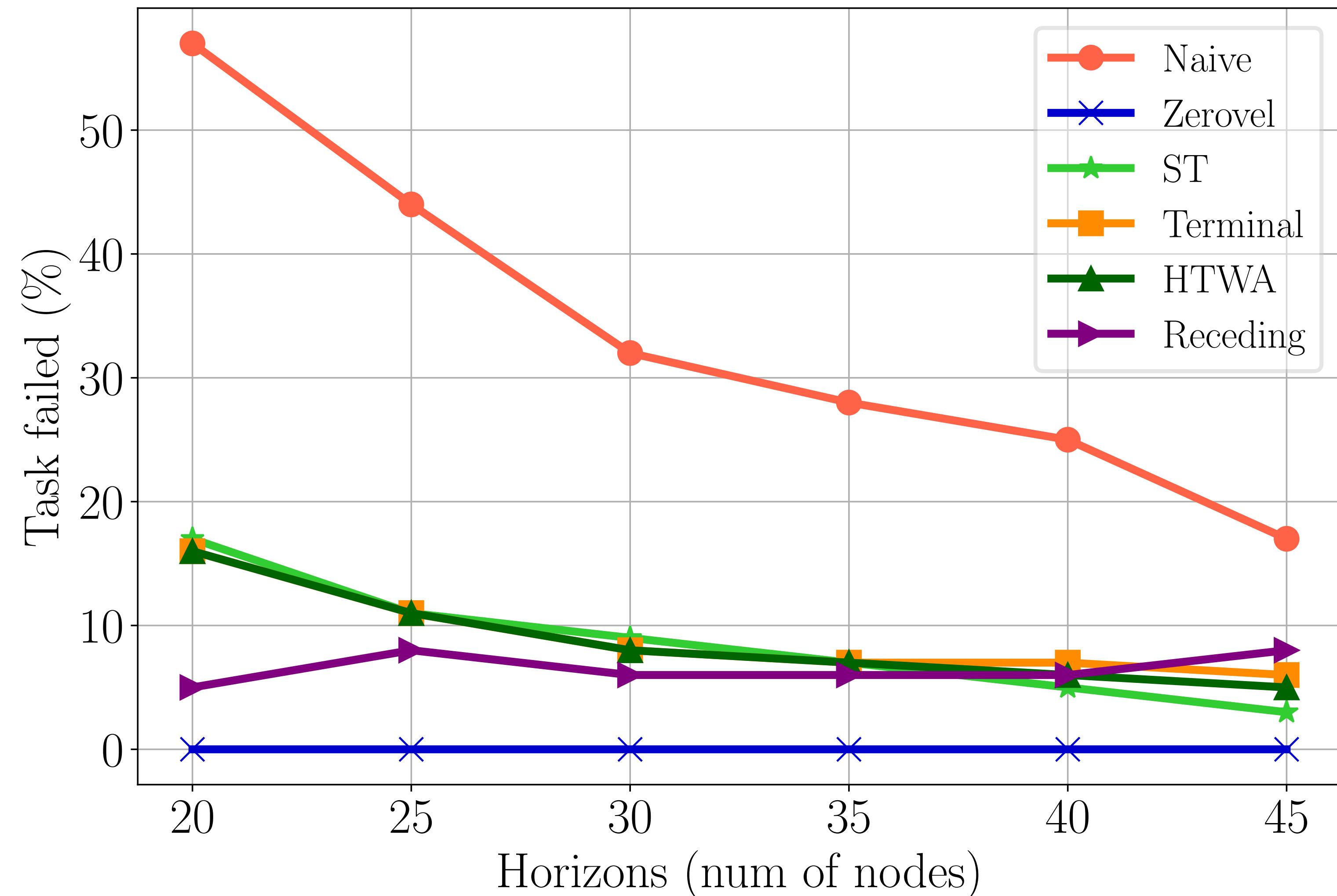
Simulation Results

- Comparing several **MPC formulations**
- 4 **DoF** Z1 robot manipulator
- **Acados** software library
- Safe set $\hat{\mathcal{V}}$ represented with **neural network**
- 500 simulations from random initial configurations
- Max horizon $N=45$ to ensure **computation time $< dt$** (5 ms)
- <https://github.com/idra-lab/safe-mpc>



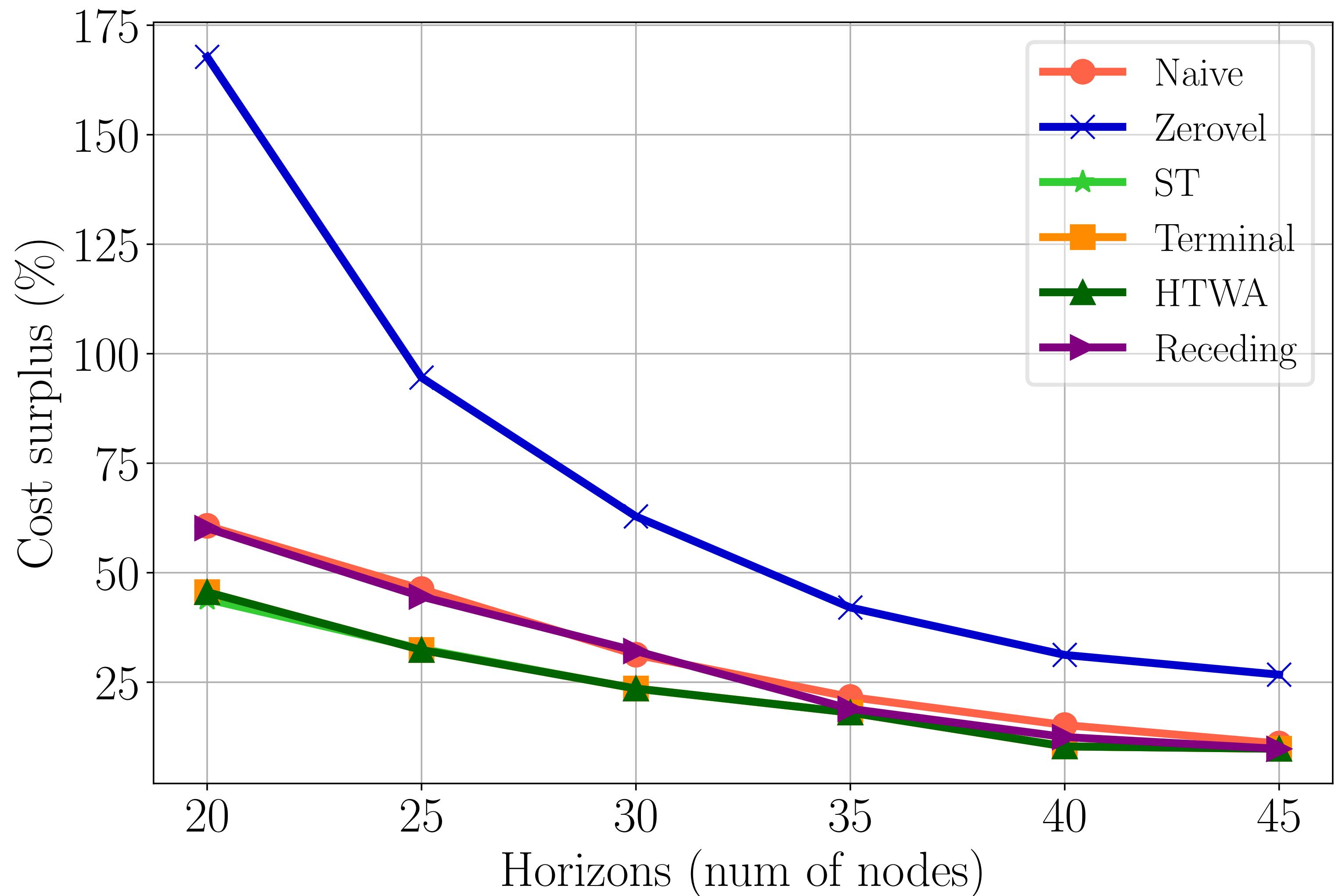
Simulation Results - Receding

- Naive: standard MPC formulation
- Zerovel: terminal constraint imposing zero velocity
- ST: soft terminal constraint $\hat{\mathcal{V}}$
- Terminal: hard terminal constraint $\hat{\mathcal{V}}$
- HTWA: hard terminal constraint $\hat{\mathcal{V}}$ with safe abort strategy



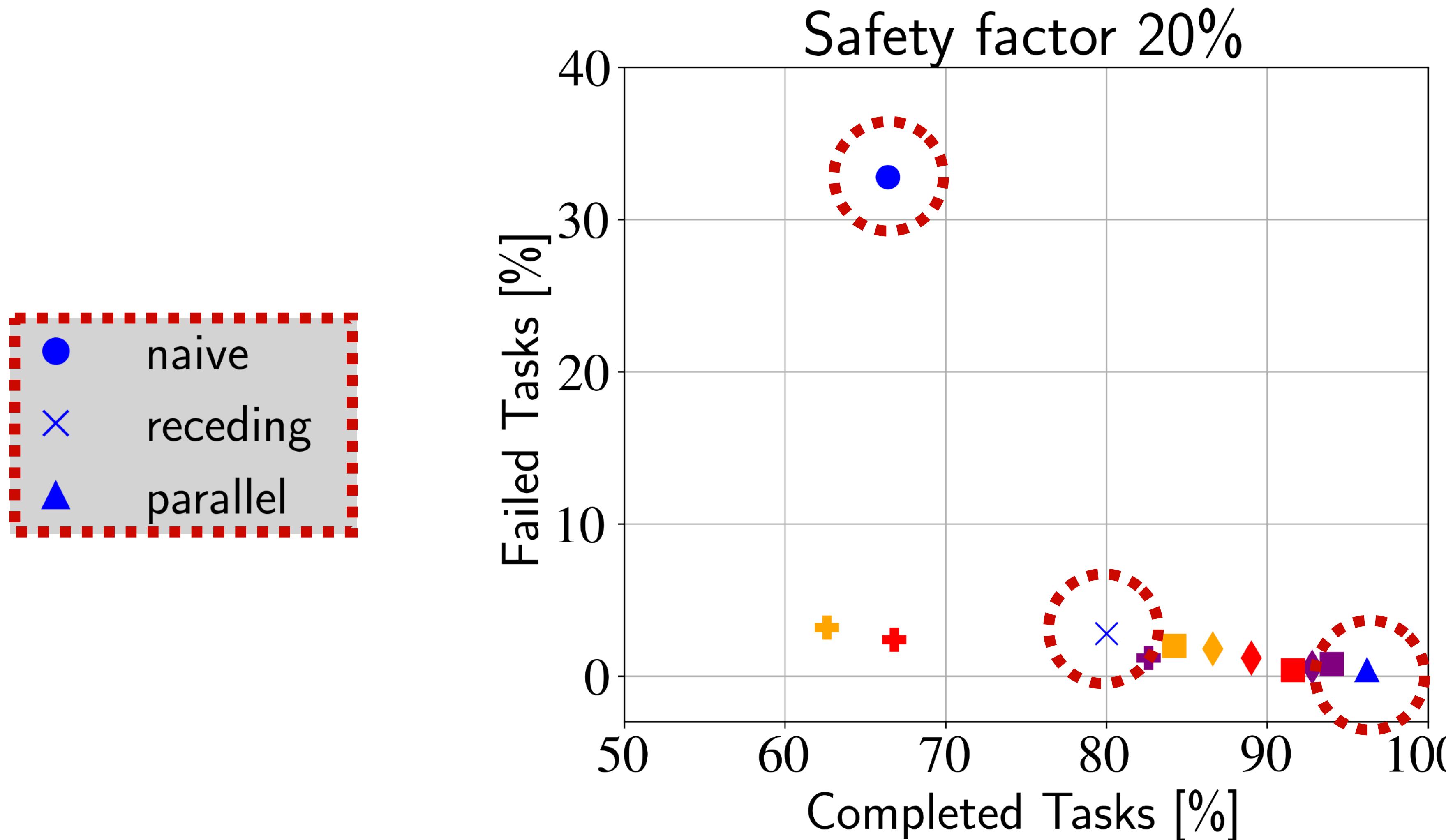
Simulation Results - Receding

- Naive: standard MPC formulation
- Zerovel: terminal constraint imposing zero velocity
- ST: soft terminal constraint $\hat{\mathcal{V}}$
- Terminal: hard terminal constraint $\hat{\mathcal{V}}$
- HTWA: hard terminal constraint $\hat{\mathcal{V}}$ with safe abort strategy



Simulation Results - Parallel

3-DoF manipulator



Computation Time

MPC Formulation	Computation Time (99-Percentile) [ms]
Naive	3.8
Soft Terminal	5.5
Soft Terminal with Abort	3.7
Hard Terminal with Abort	3.9
Receding Constraint	3.9

Conclusions

- Novel MPC formulations ensuring
 - **Recursive feasibility** under weaker conditions (N-Step CIS)
 - **Safety** under even weaker conditions (inner approx. of CIS)

On-going/future work

- Hardware implementation
- Computation/**certification** of N-Step CIS
- Handle dynamics **uncertainties/obstacles**
- Application as **safety filter** for RL policies

Safe and Efficient robot control

Combining learning and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

UNIVERSITY
OF TRENTO

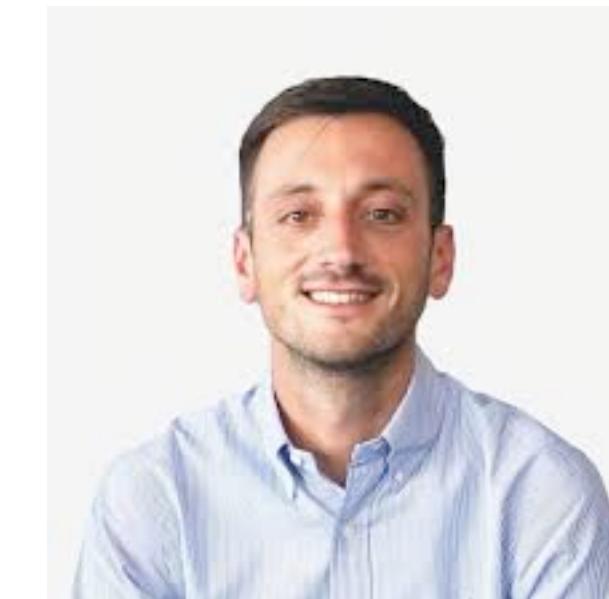
**

UNIVERSITY OF
NOTRE DAME

PSL

CACTO: Continuous Actor-Critic with Trajectory Optimization

Gianluigi Grandesso*,
Elisa Alboni*,
Gastone Rosati Papini*,
Patrick Wensing**,
Justin Carpentier***,
Andrea Del Prete*



Reinforcement Learning ~~VS~~ Trajectory Optimization WITH?

$$\begin{aligned} \min_{x(t), u(t)} & \int_0^T l(x(t), u(t)) dt + l_f(x(T)) \\ \text{s. t.} & \dot{x}(t) = f(x(t), u(t), t) \quad \forall t \in [0, T] \\ & x(0) = x_0 \\ & u_{min} < u(t) < u_{max} \quad \forall t \in [0, T] \end{aligned}$$

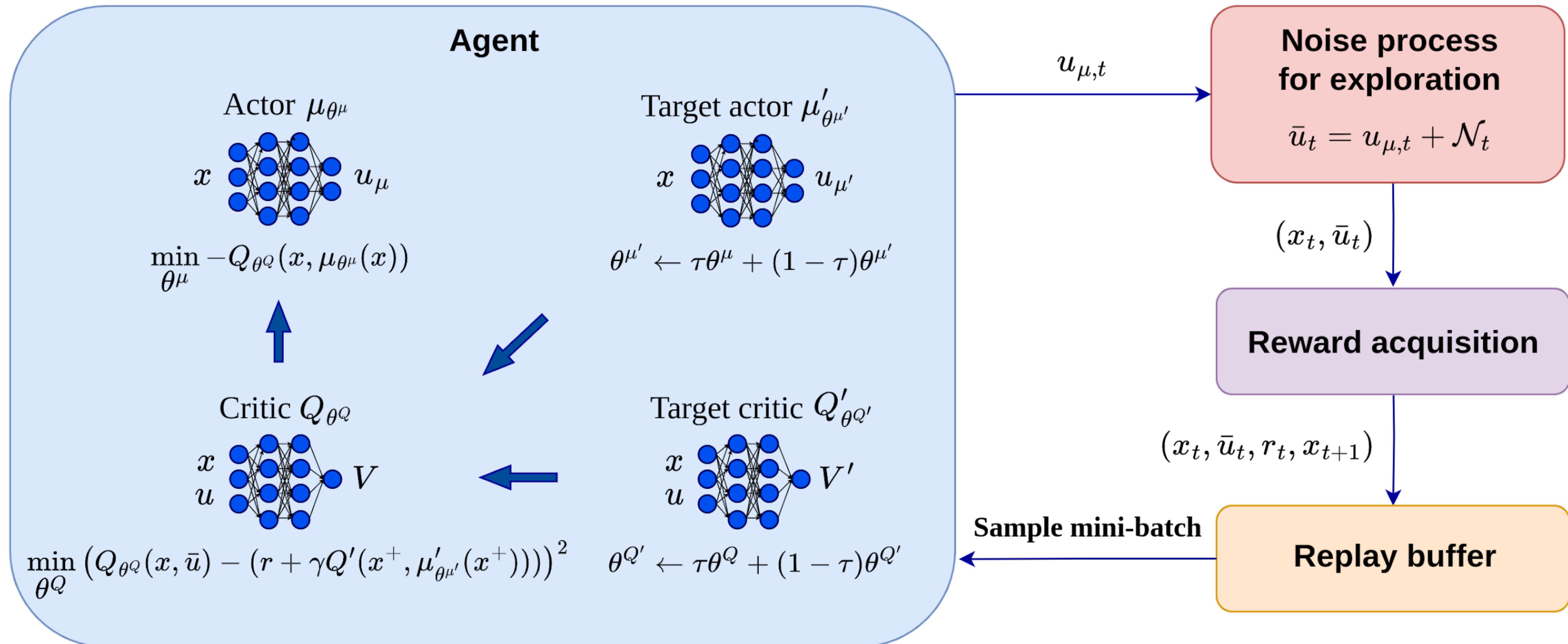
Reinforcement Learning

- + Less prone to poor local minima
- + Derivative free
- + Policy as output
- Poor data efficiency (slow)

Trajectory Optimization

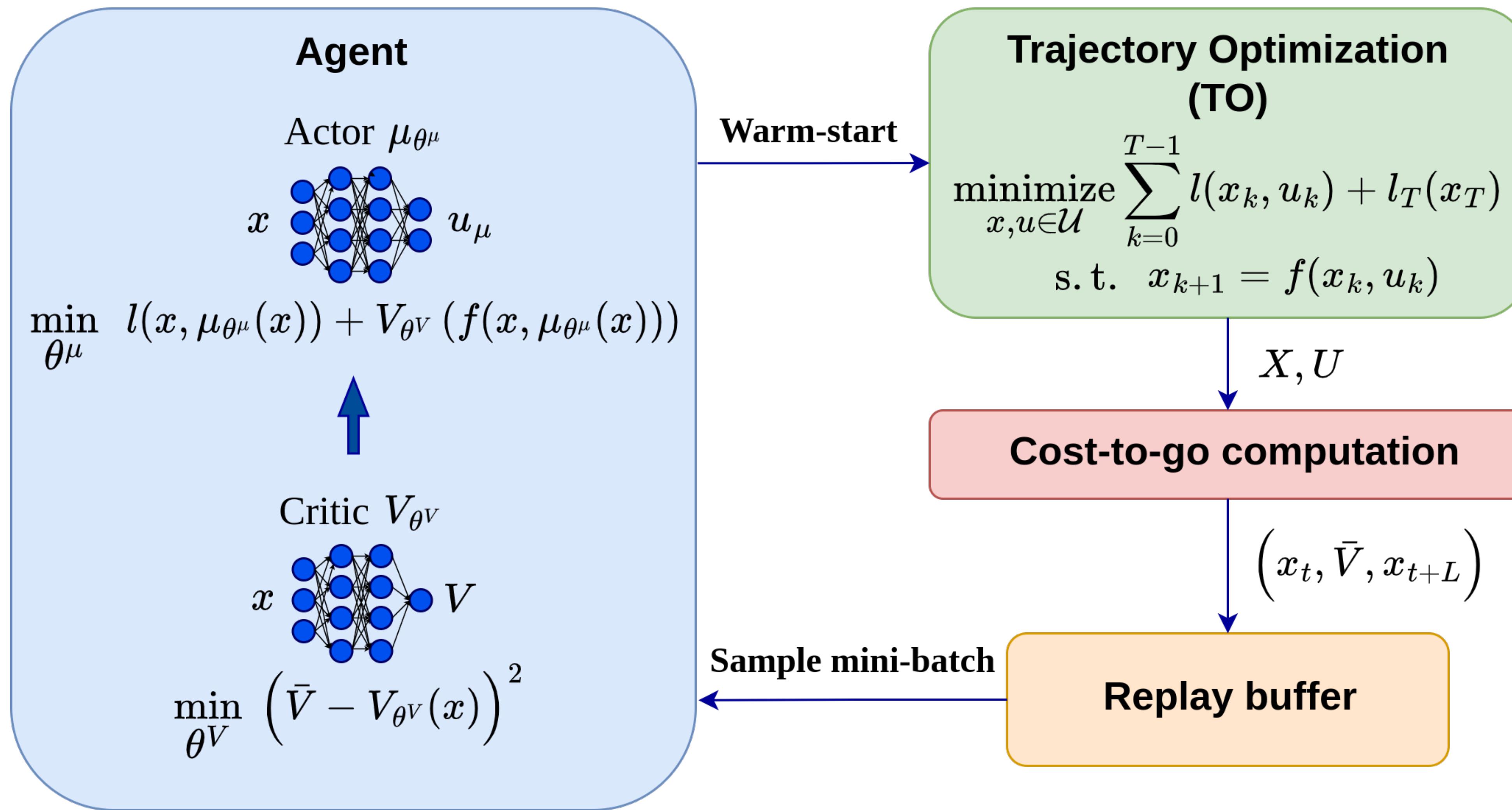
- + Data efficient (fast)
- + Exploits knowledge of dynamics derivatives
- Can get stuck in poor local minima
- Trajectory as output

Deep Deterministic Policy Gradient (DDPG)



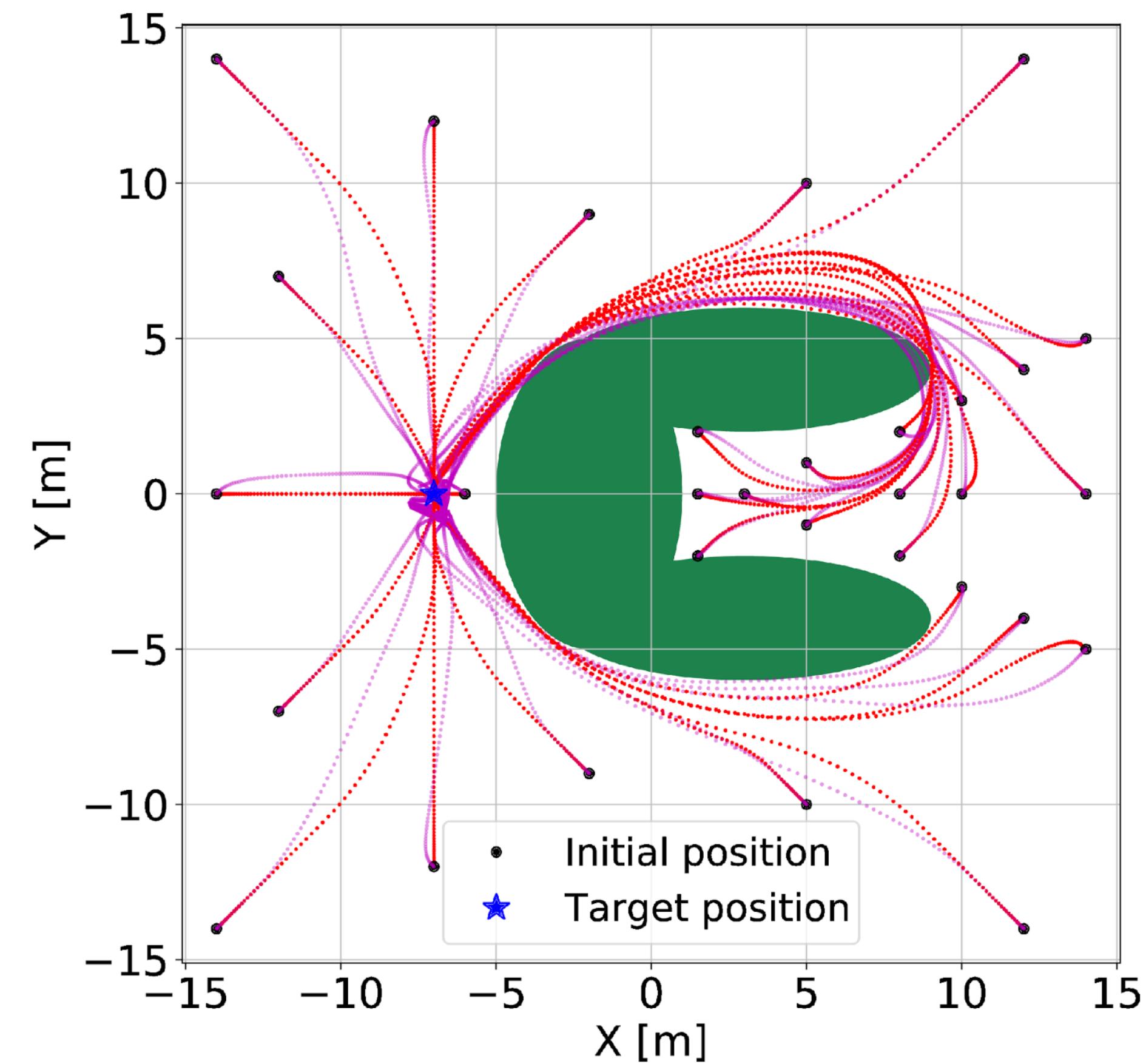
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... Wierstra, D. (2015). Continuous control with deep reinforcement learning. In *Foundations and Trends in Machine Learning*

CACTO



Results

Task: find shortest path to target using low control effort and avoiding obstacles

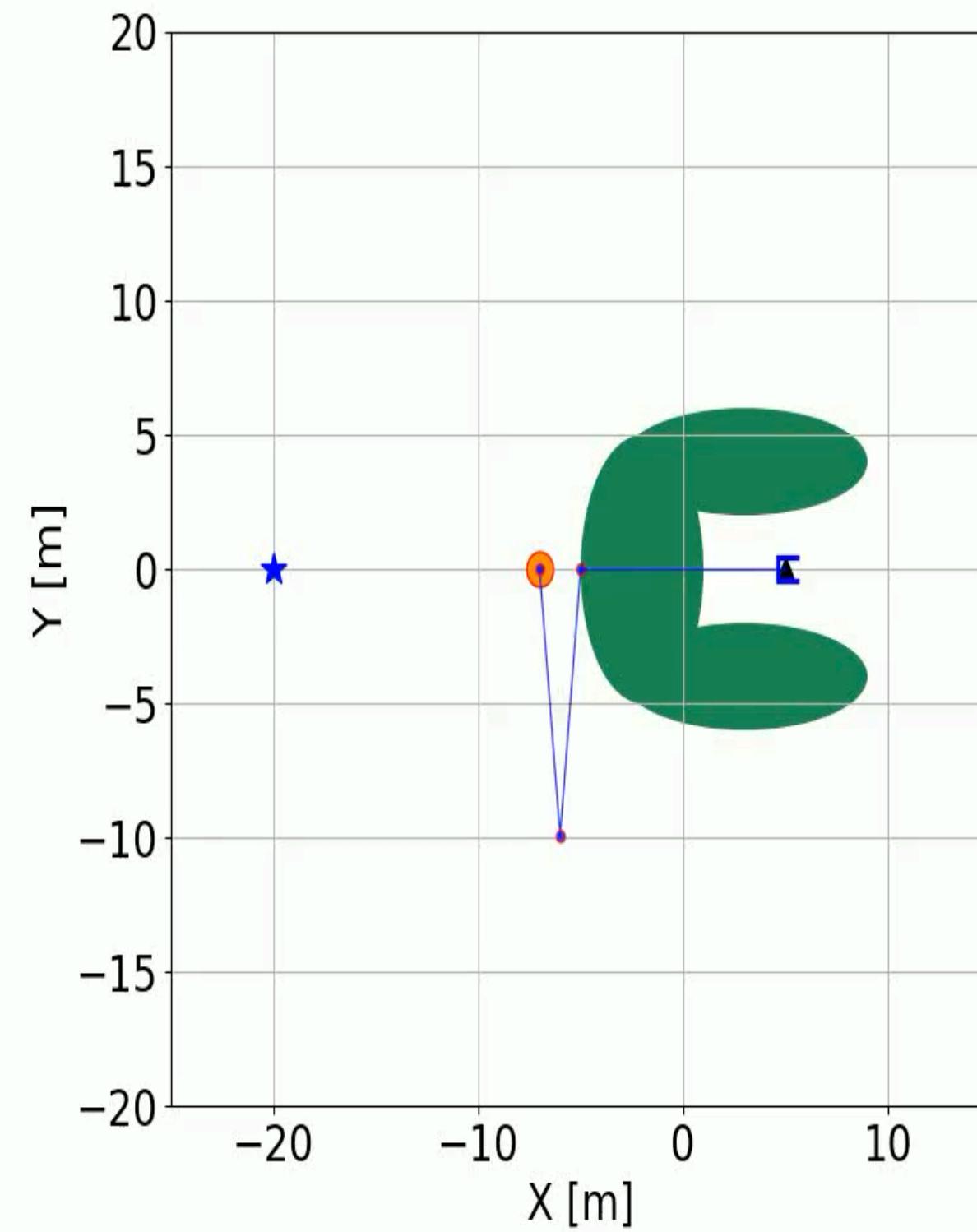


Systems: 2D single/double integrator, 6D car model, 3-joint manipulator

Results: 3-DoF Manipulator

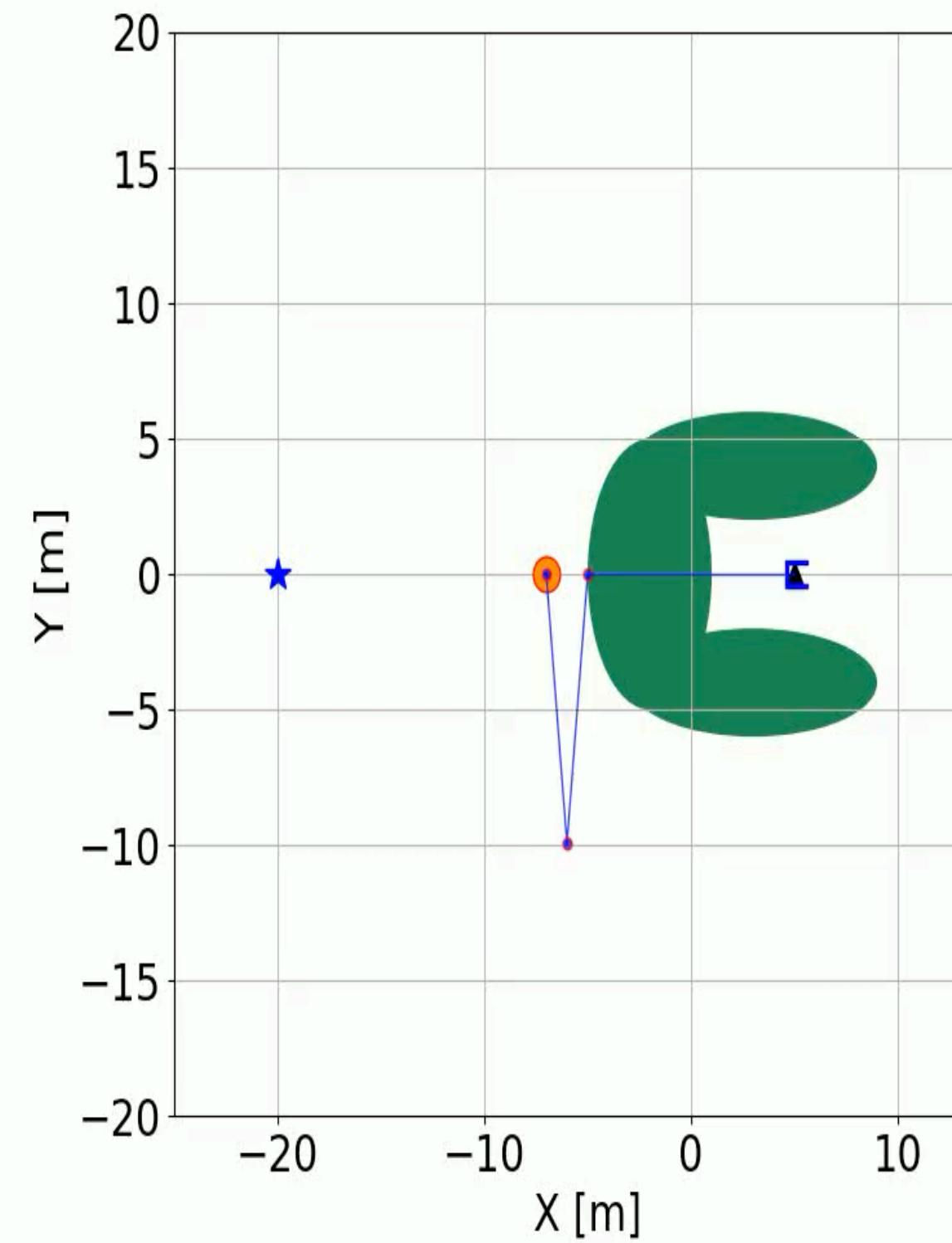
Initial Conditions

warm-start



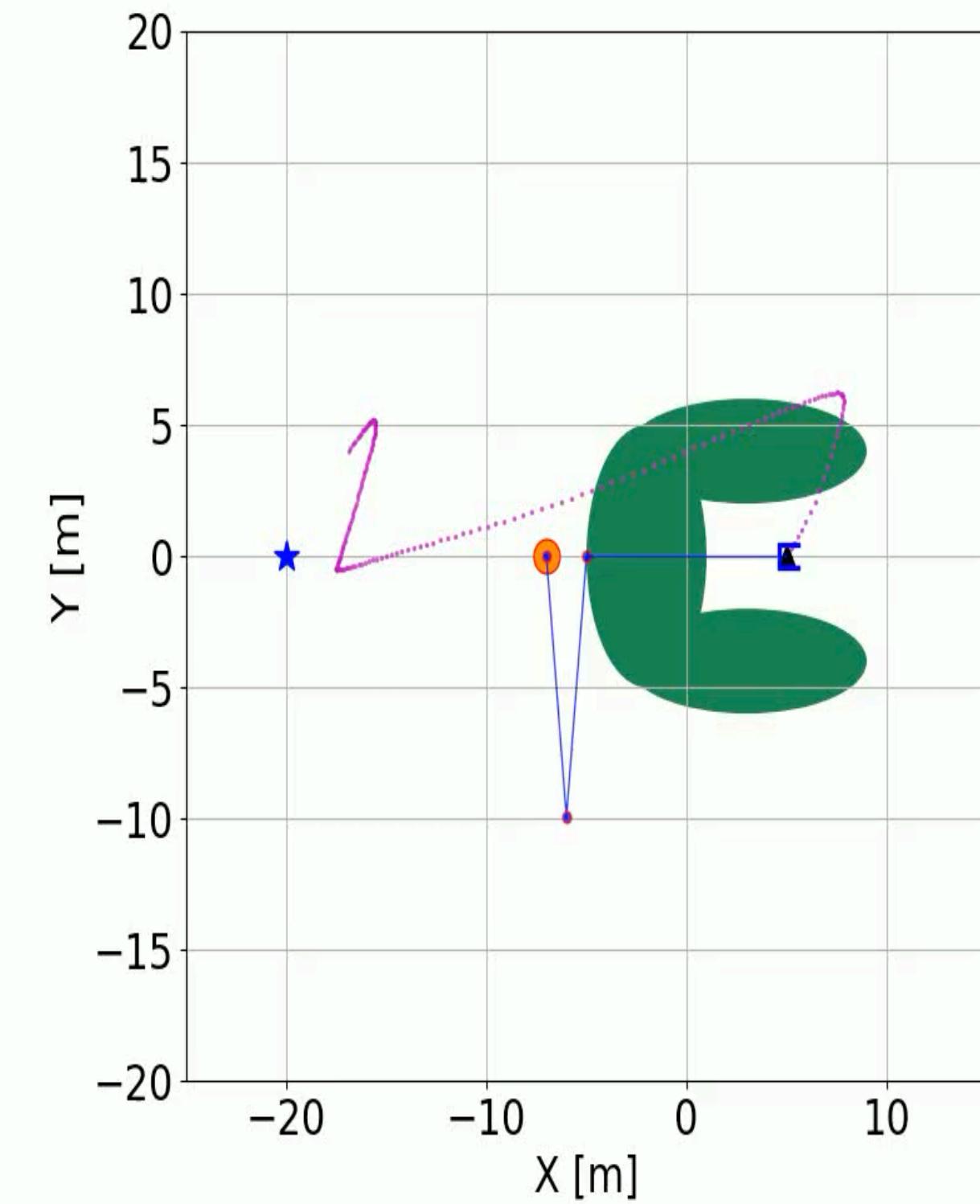
Cost = 70800

Random
warm-start



Cost = 88647

CACTO
warm-start



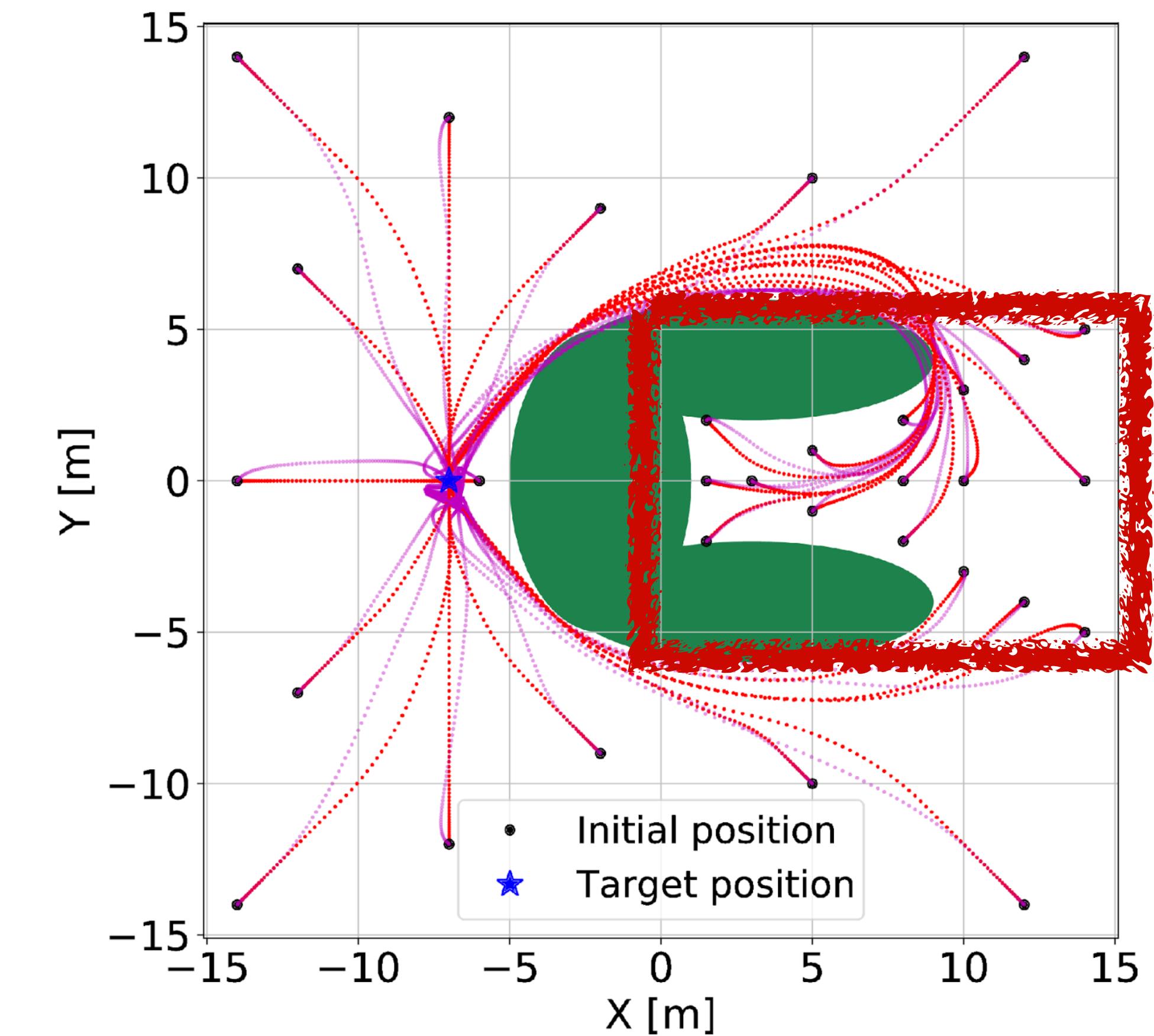
Cost = -145875

Comparison: CACTO vs TO

% of times TO finds better solution if warm-started with CACTO rather than:

- Random values
- Initial conditions (ICS) for states, zero for other variables

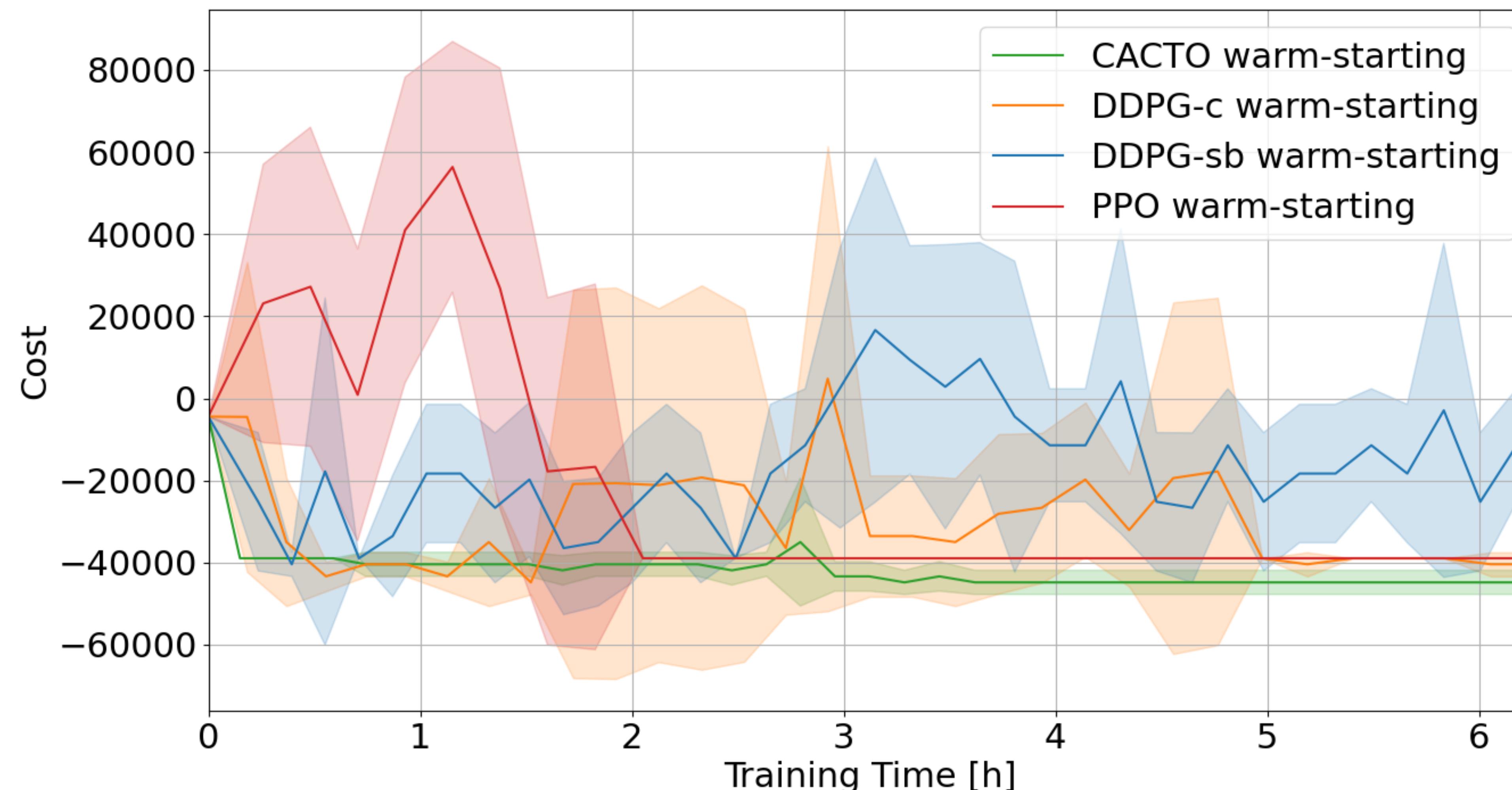
System	Hard Region	
	CACTO < (\leq) Random	CACTO < (\leq) ICS
2D Single Integrator	99.1% (99.1%)	92% (99.1%)
2D Double Integrator	99.9% (99.9%)	92% (99.1%)
Car	100% (100%)	92.9% (100%)
Manipulator	87.5% (87.5%)	100% (100%)



2D Double Integrator - CACTO warm-start

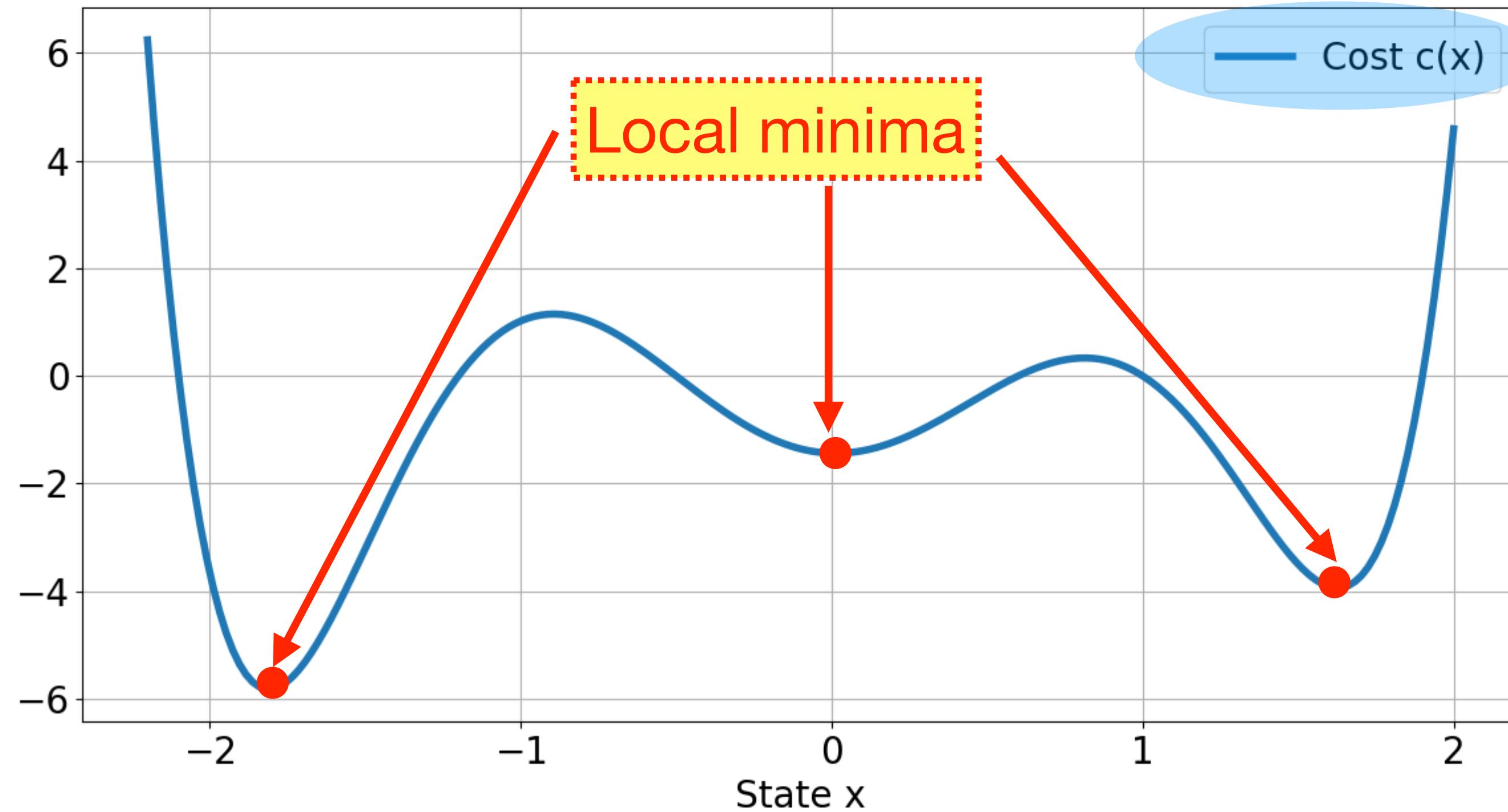
Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies



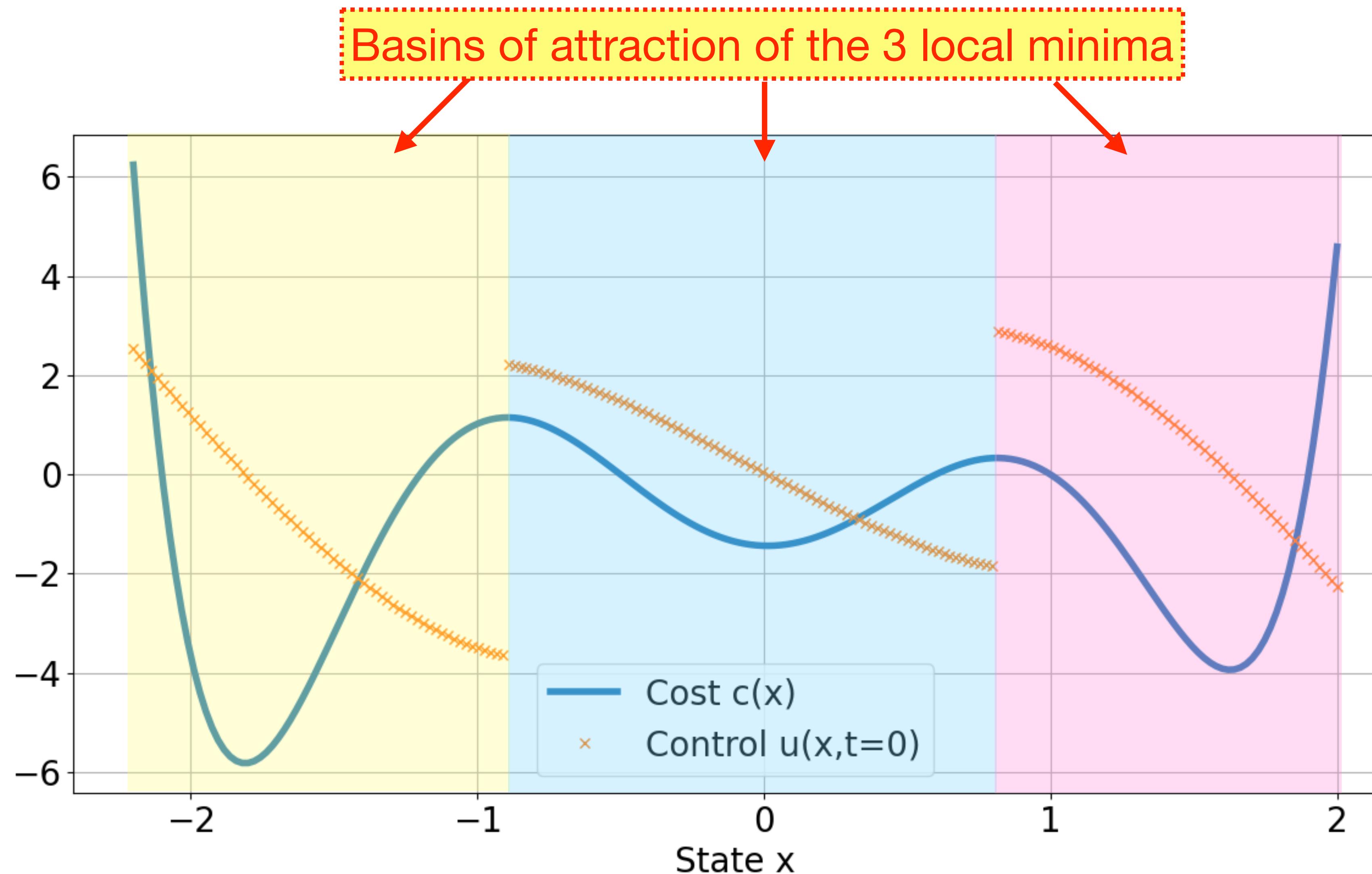
1D Example

$$\begin{aligned} & \underset{X, U}{\text{minimize}} && \sum_{k=0}^{T-1} [c(x_k) + w_u \|u_k\|^2] + c(x_T) \\ & \text{subject to} && x_{k+1} = x_k + \Delta t u_k \quad \forall k = 0, \dots, T-1 \\ & && x_0 = x_{init} \end{aligned}$$



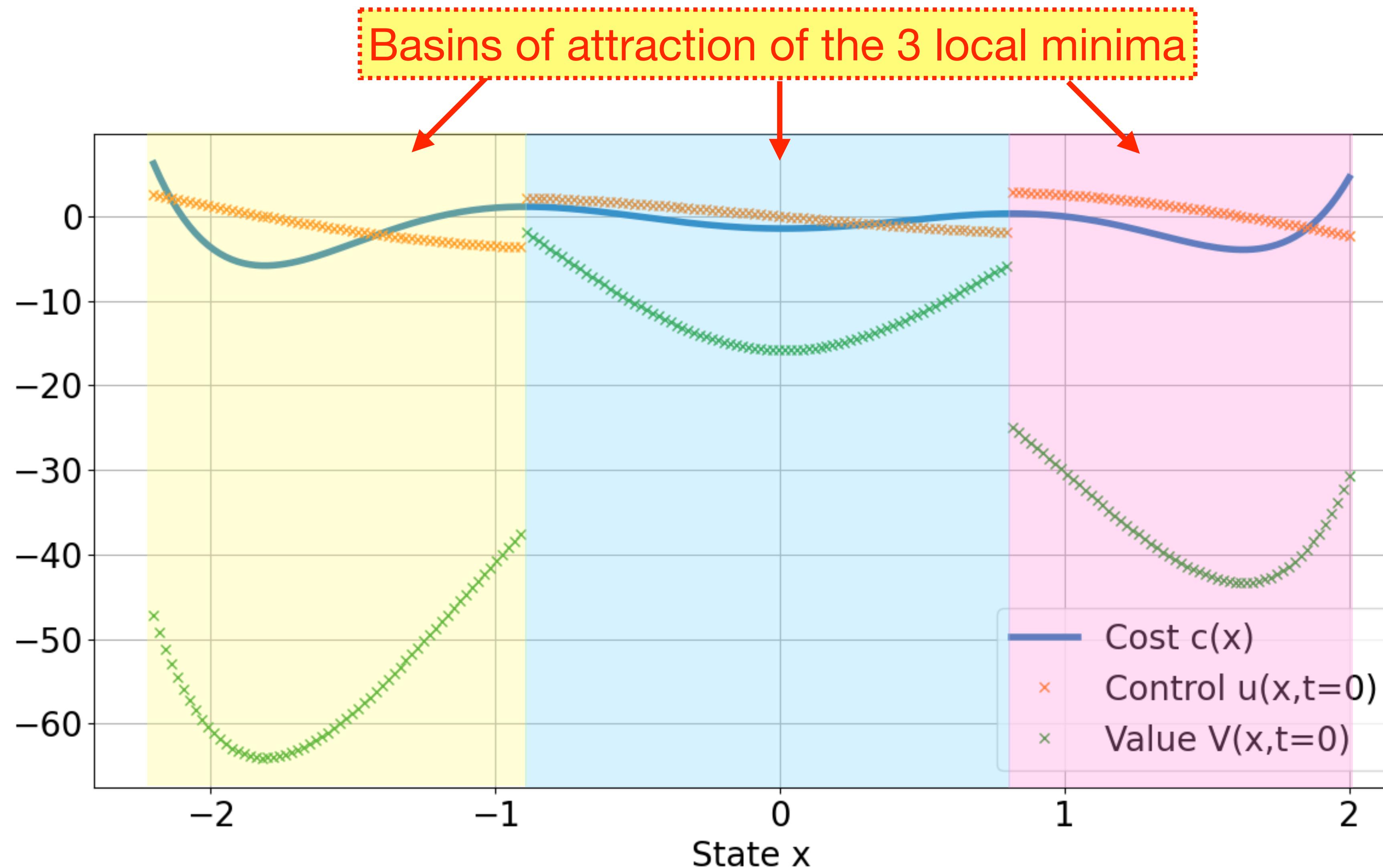
Trajectory Optimization

With naive initial guess



Trajectory Optimization

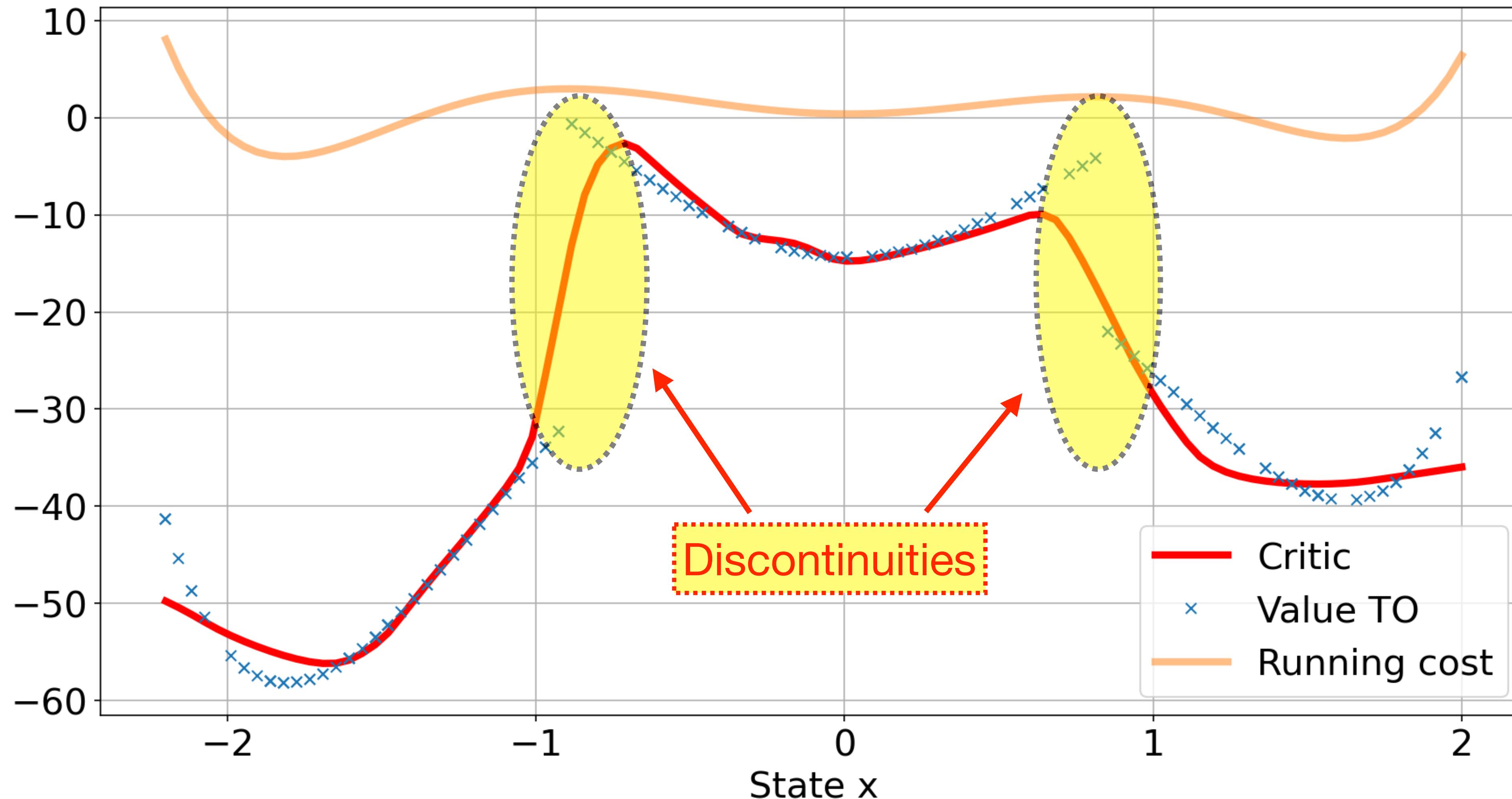
With naive initial guess



First Iteration

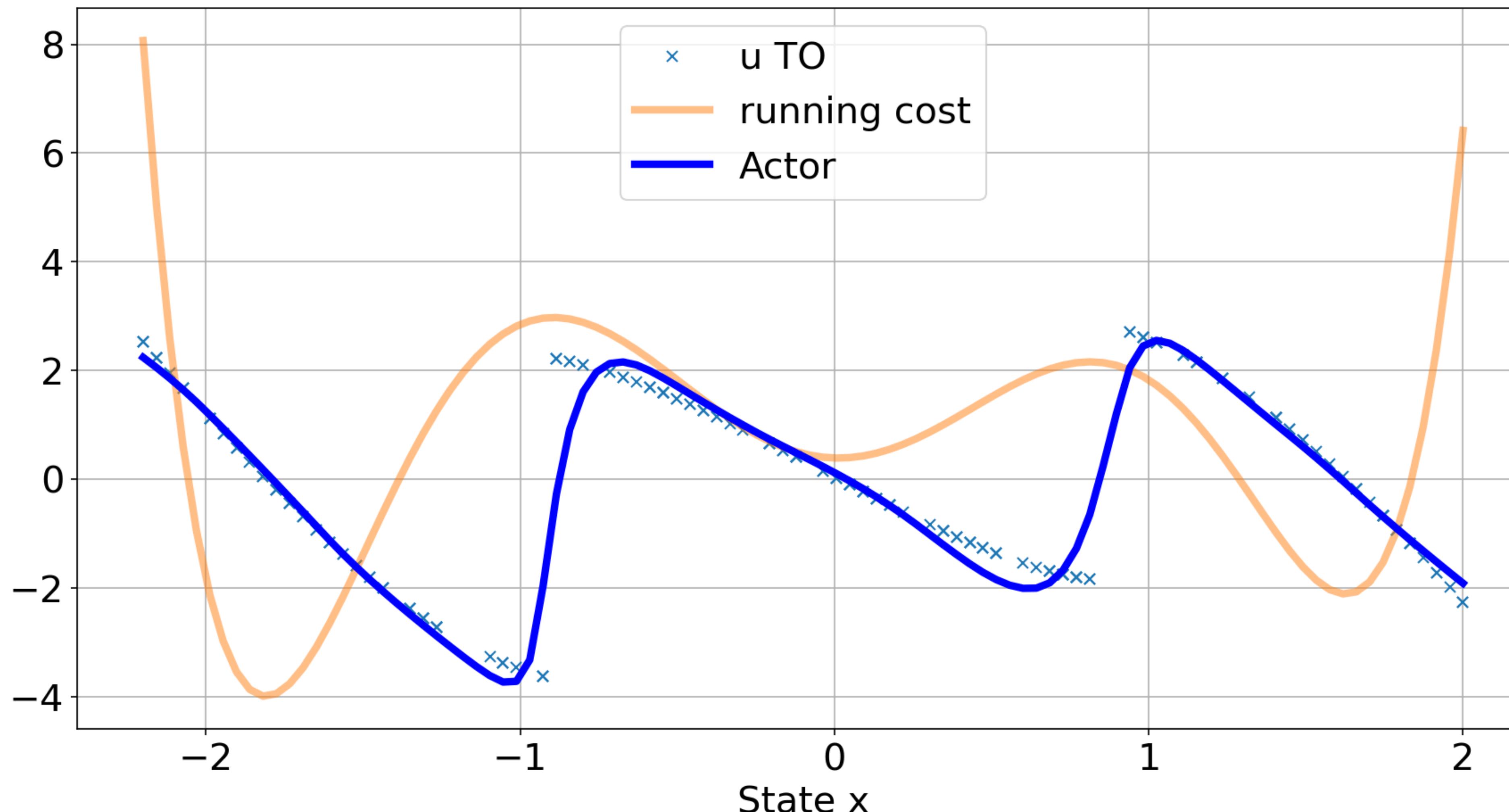
Learning the critic

The Value function is discontinuous so the network approximates it.



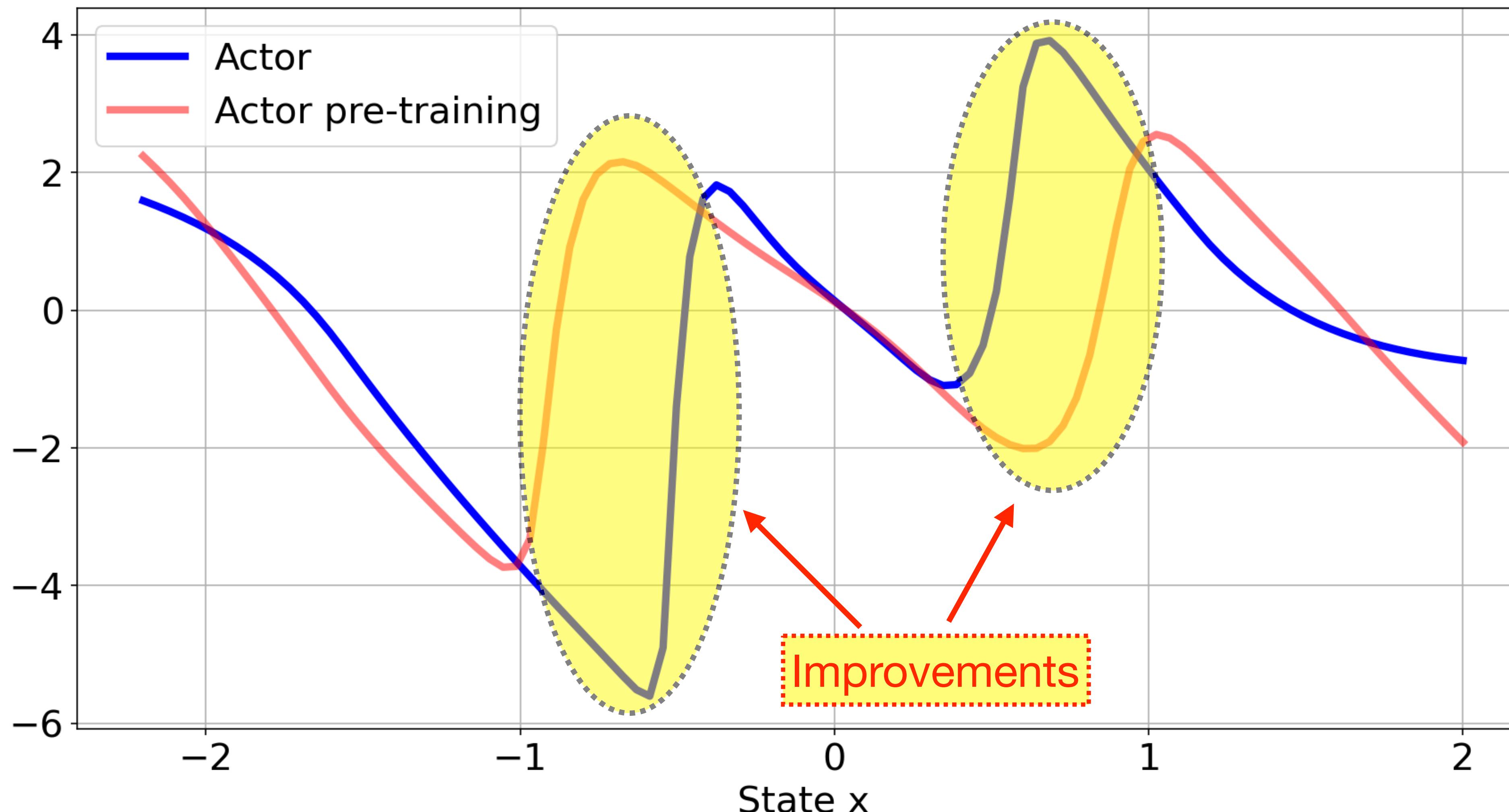
Supervised Learning of the actor

At the first iteration we pre-train the actor to imitate the control inputs of TO.



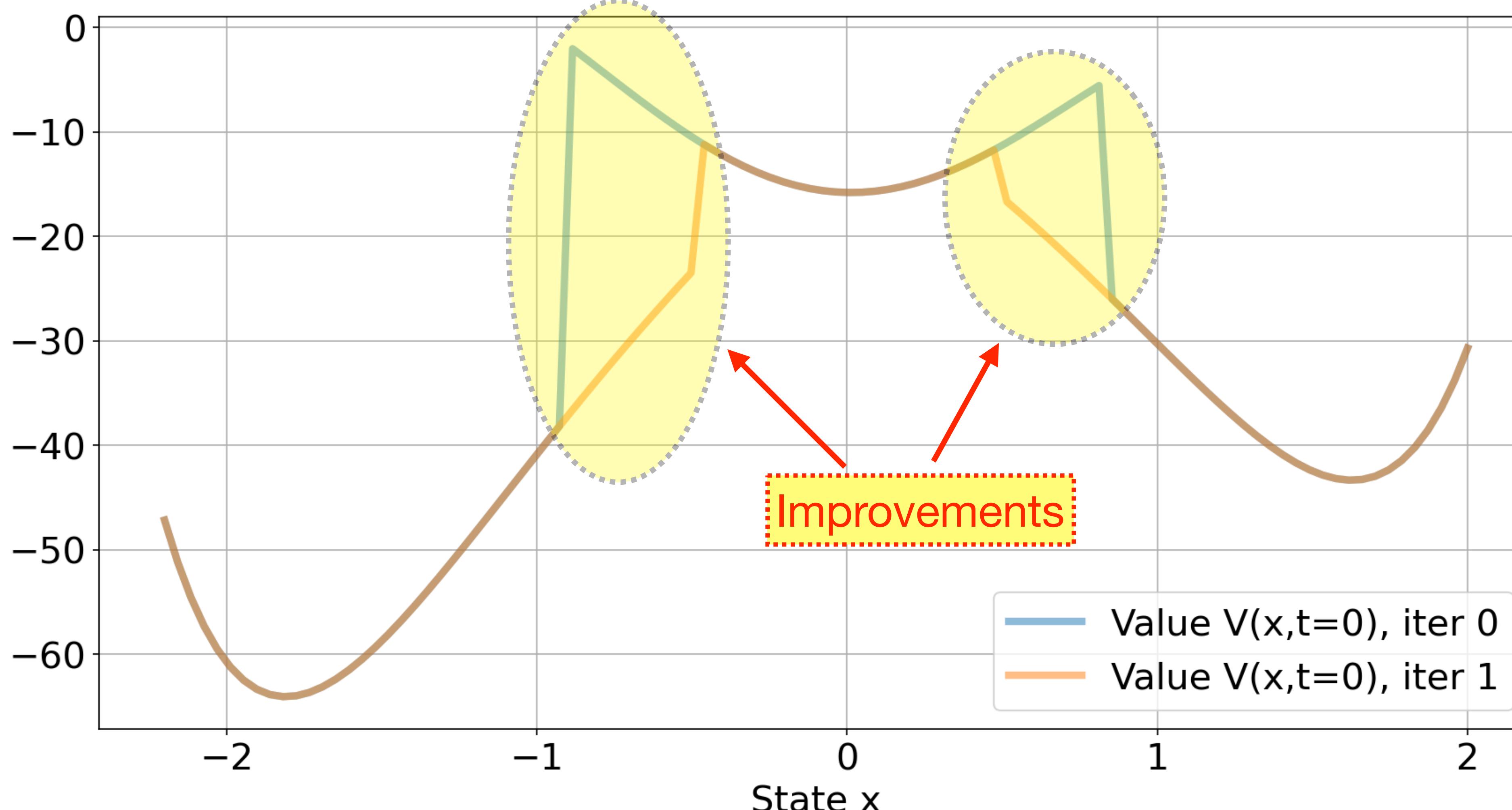
Learning the actor minimizing Q

We improve the actor by minimizing the Q function



Using the actor to warm-start TO

TO improves thanks to the initial guess of the actor



Conclusions

- TO guides the RL exploration making it sample efficient
- Global convergence proof for discrete-space version of CACTO

Recent extension

- Improve data efficiency leveraging derivative of Value function [2]

Future work

- Bias initial episode state to improve data efficiency
- Parallelize on GPUs
- Handle non-differentiable dynamics

Take-Home Message

Globally Optimal and Safe Robot Control

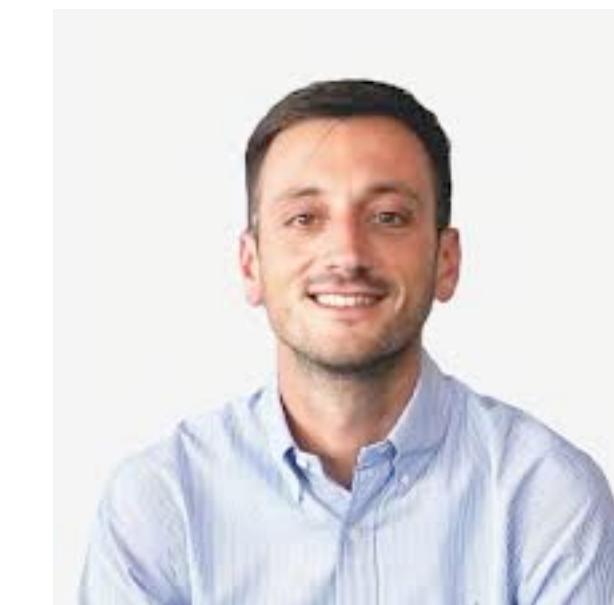
- Using ideas from TO we can make RL efficient and safe
 - Use **dynamics derivatives** to guide RL exploration (CACTO)
 - Use **novel safe sets** to make control (RL) safe

Current challenges

- algorithms to compute $\hat{\mathcal{V}}$ **do not scale** and cannot **certify** set properties (e.g. N-Step Control Invariance)
- dynamics derivatives are ill-defined in **contact-rich** tasks

Safe and Efficient Robot Control

Combining **learning** and trajectory optimization



Andrea Del Prete

UNIVERSITY
OF TRENTO