

Safe and Efficient Reinforcement Learning

Combining **learning** and trajectory optimization

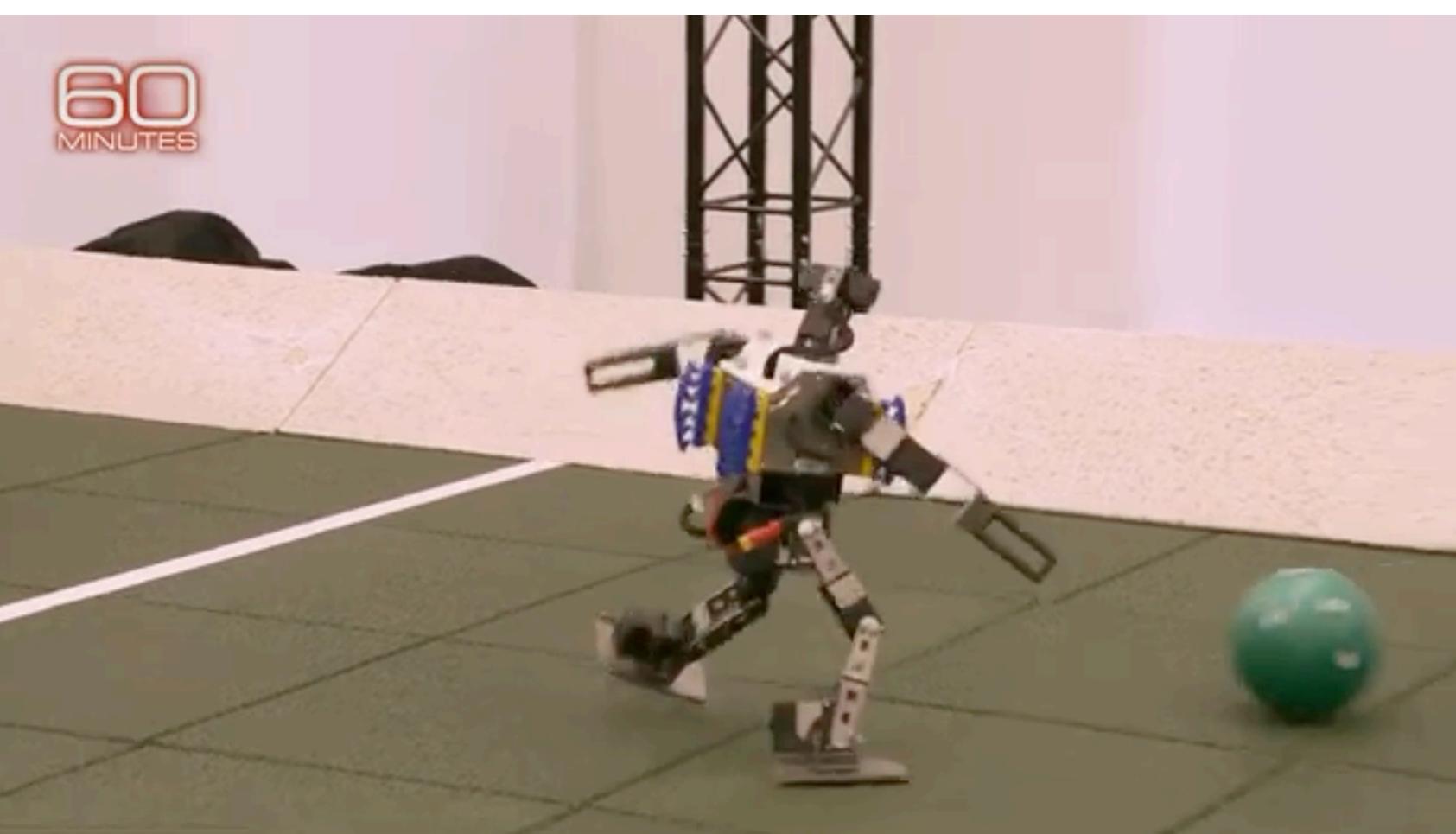
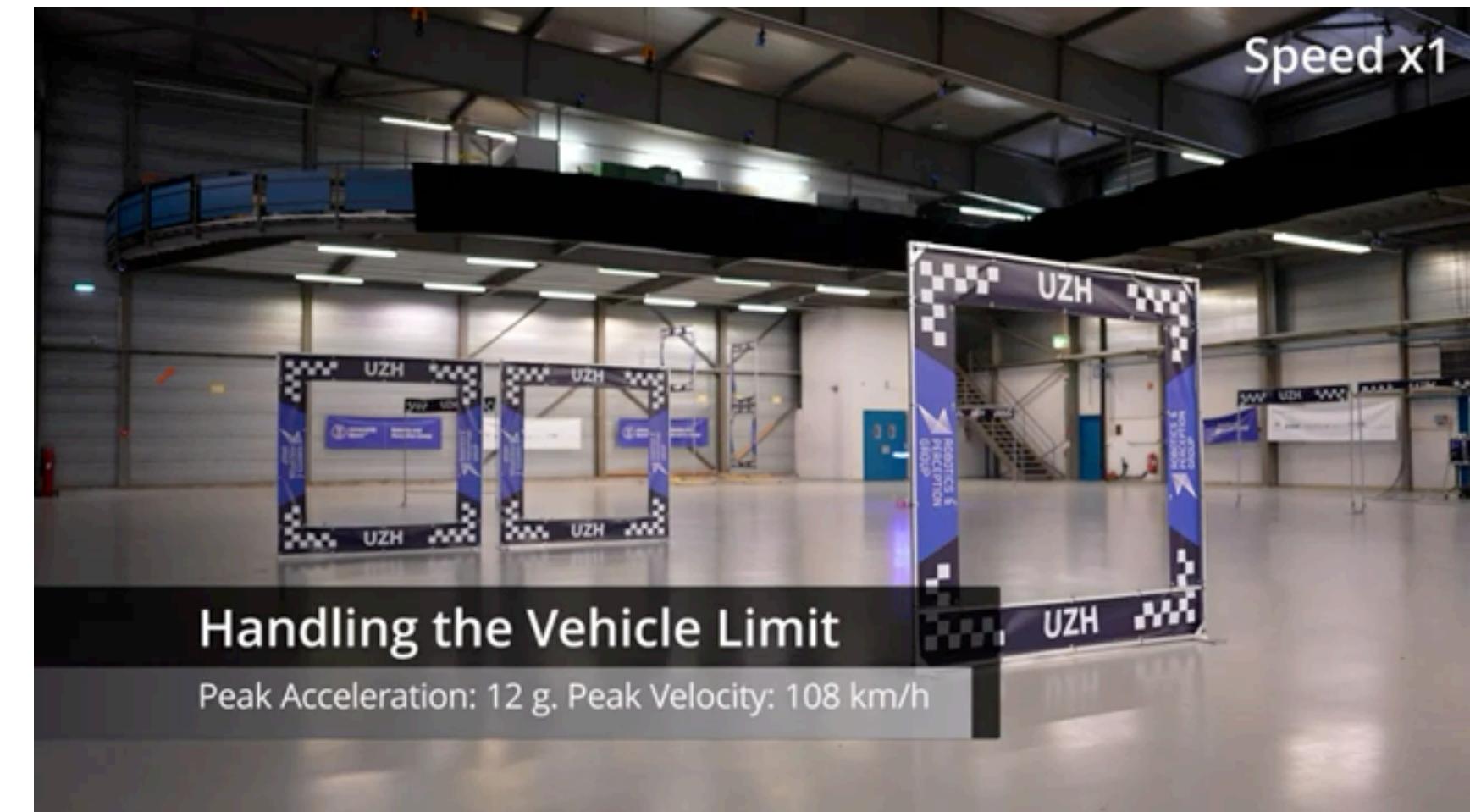
Andrea Del Prete

**UNIVERSITY
OF TRENTO**

Is there **anything** Reinforcement Learning can't do?

Lee, Hwangbo, Wellhausen, Koltun, Hutter (2020). Learning quadrupedal locomotion over challenging terrain. *Science Robotics*

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala, D., Wulfmeier, M., ... Heess, N. (2023). Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning



Song, Romero, Müller, Koltun, Scaramuzza, (2023). Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. *Science Robotics*

The **issues** with RL

My two cents

Poor **efficiency**

- Data efficiency
- Energy efficiency
- Time efficiency

Poor **safety**

- No explicit constraints
- No guarantees
- Safety-critical applications

Can we use ideas from **Trajectory Optimization** to make **RL** safe and efficient?

Safe and Efficient Reinforcement Learning

Combining **learning** and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

UNIVERSITY
OF TRENTO

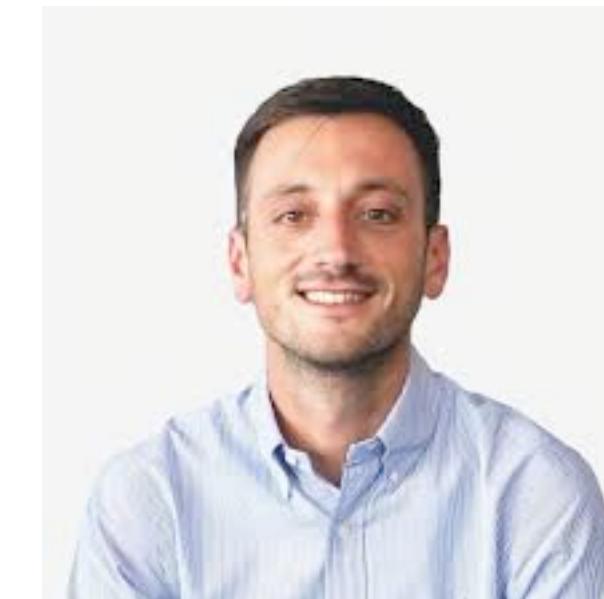
**

UNIVERSITY OF
NOTRE DAME

PSL

CACTO: Continuous Actor-Critic with Trajectory Optimization

Gianluigi Grandesso*,
Elisa Alboni*,
Gastone Rosati Papini*,
Patrick Wensing**,
Justin Carpentier***,
Andrea Del Prete*



Reinforcement Learning ~~VS~~ Trajectory Optimization WITH?

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_{i+1} \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \end{aligned}$$

Reinforcement Learning

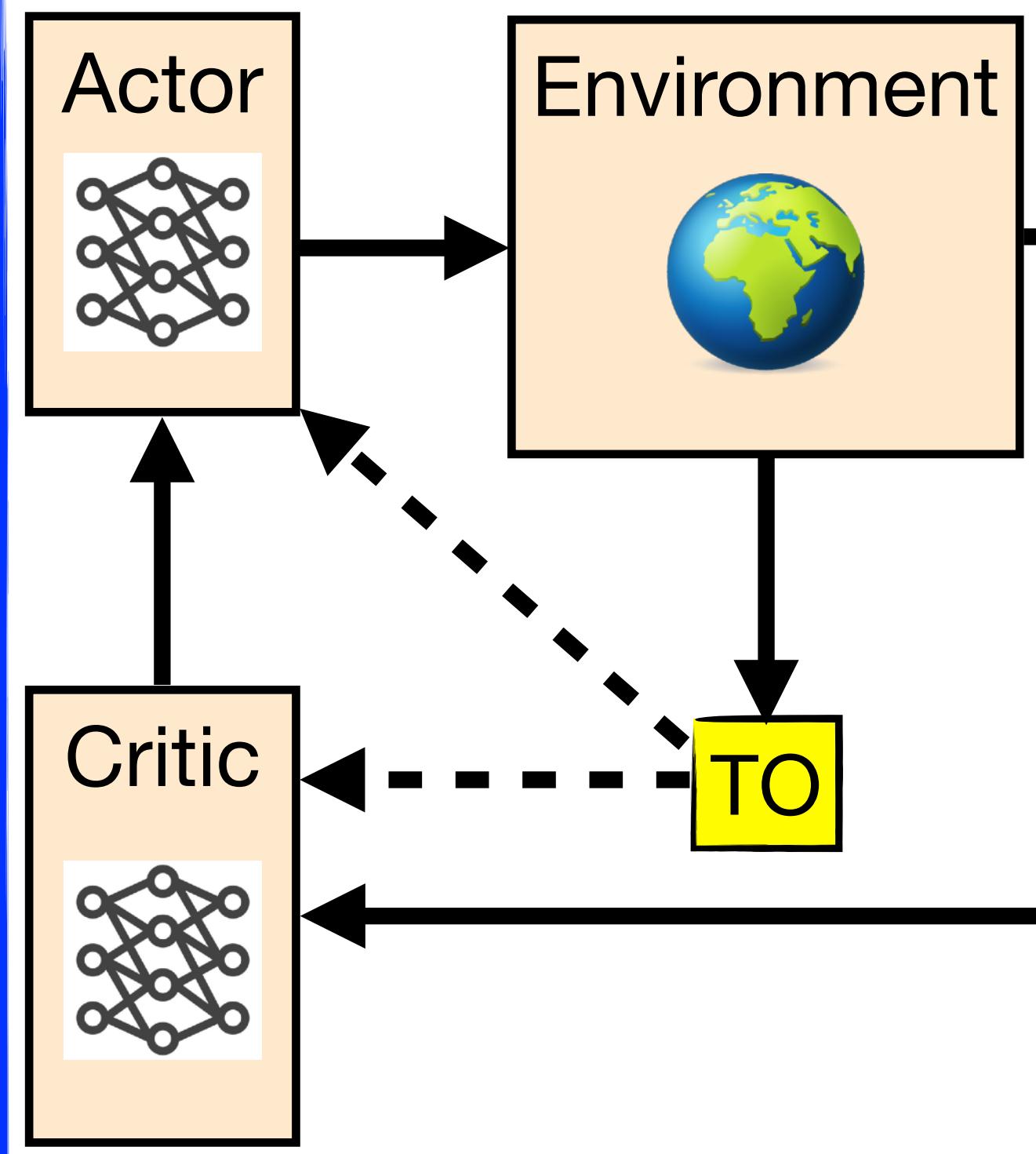
- + Less prone to poor local minima
- + Derivative free (easy to implement)
- + Fast online policy evaluation
- + Typically stochastic
- Poor data efficiency (slow training)
- Does not account for constraints

Trajectory Optimization

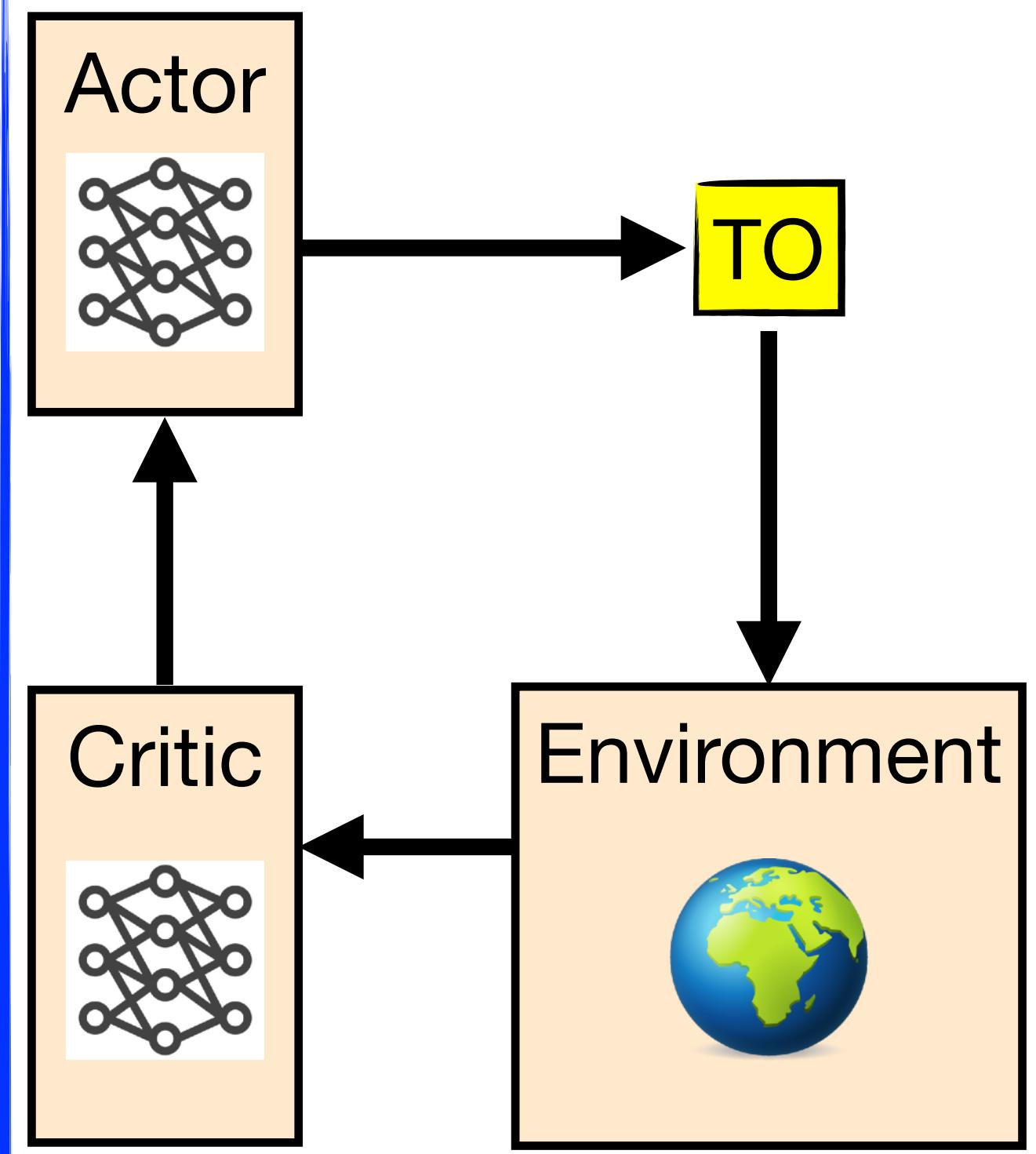
- + Data efficient (fast)
- + Exploits dynamics derivatives
- + Accounts for constraints
- Can get stuck in poor local minima
- Online computational burden
- Typically deterministic

Where should TO be introduced?

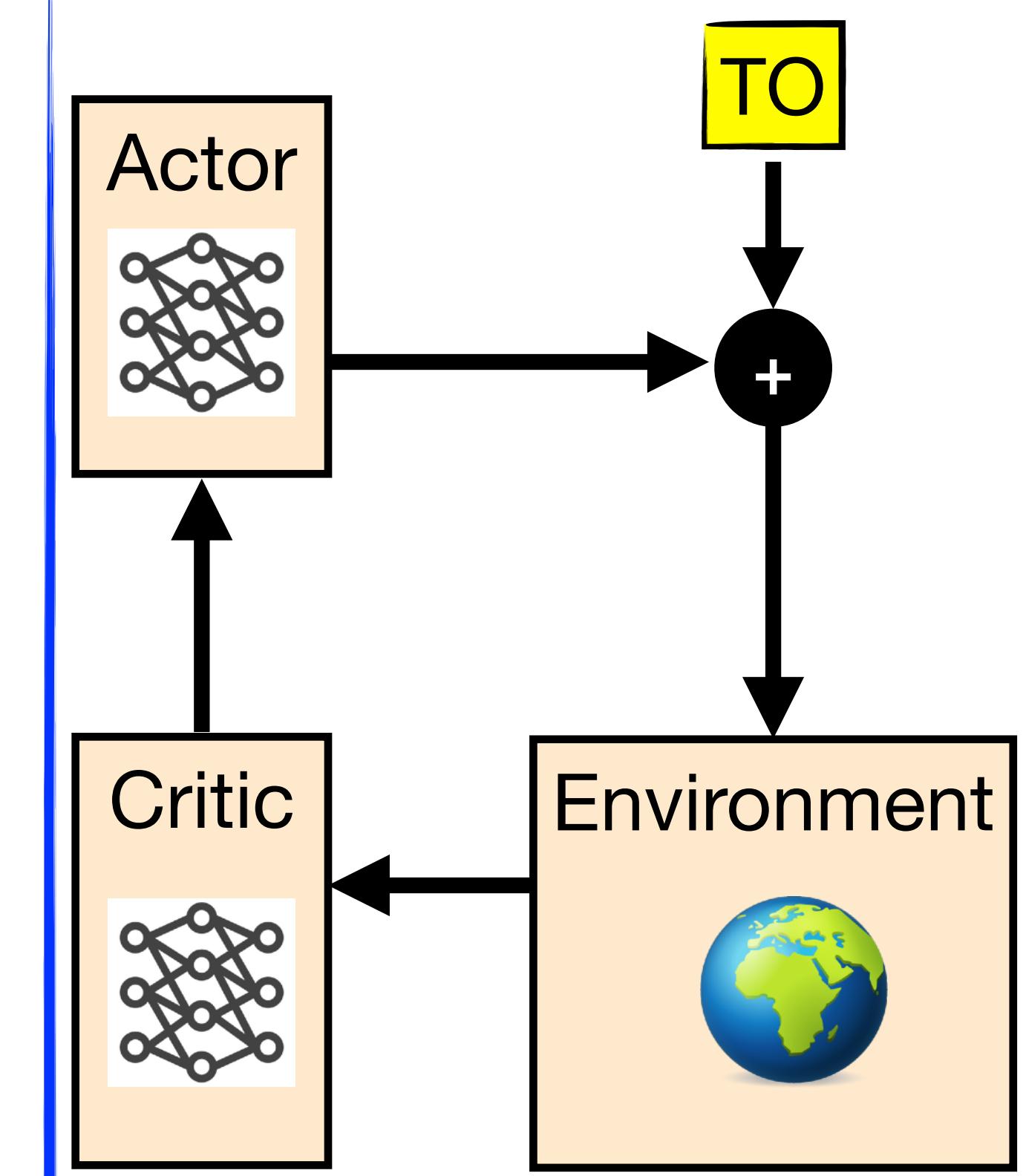
TO pre-policy



TO post-policy



TO + residual policy



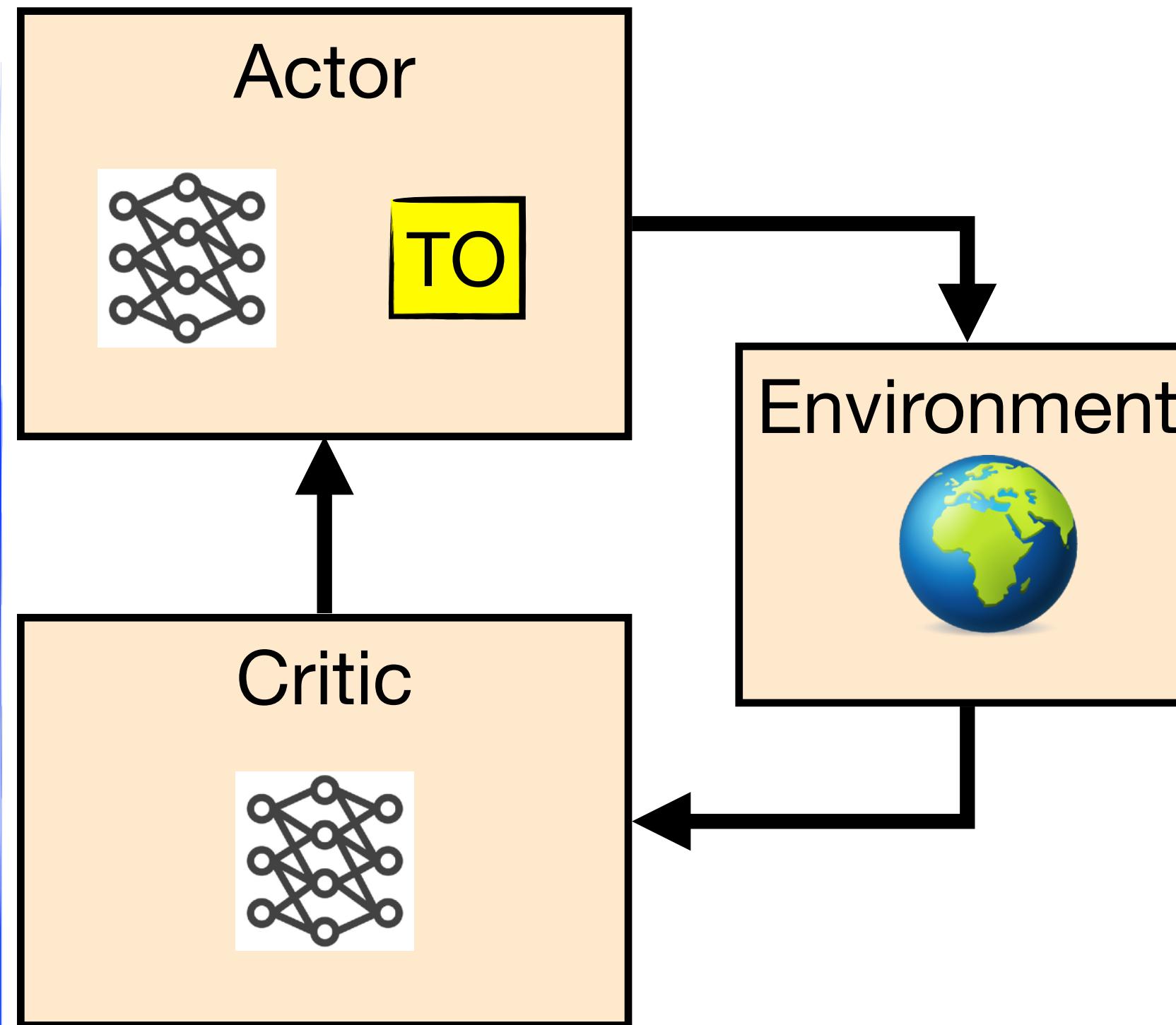
In which block should TO be considered?

Actor or environment?

TO as part of the policy

Need to differentiate TO!

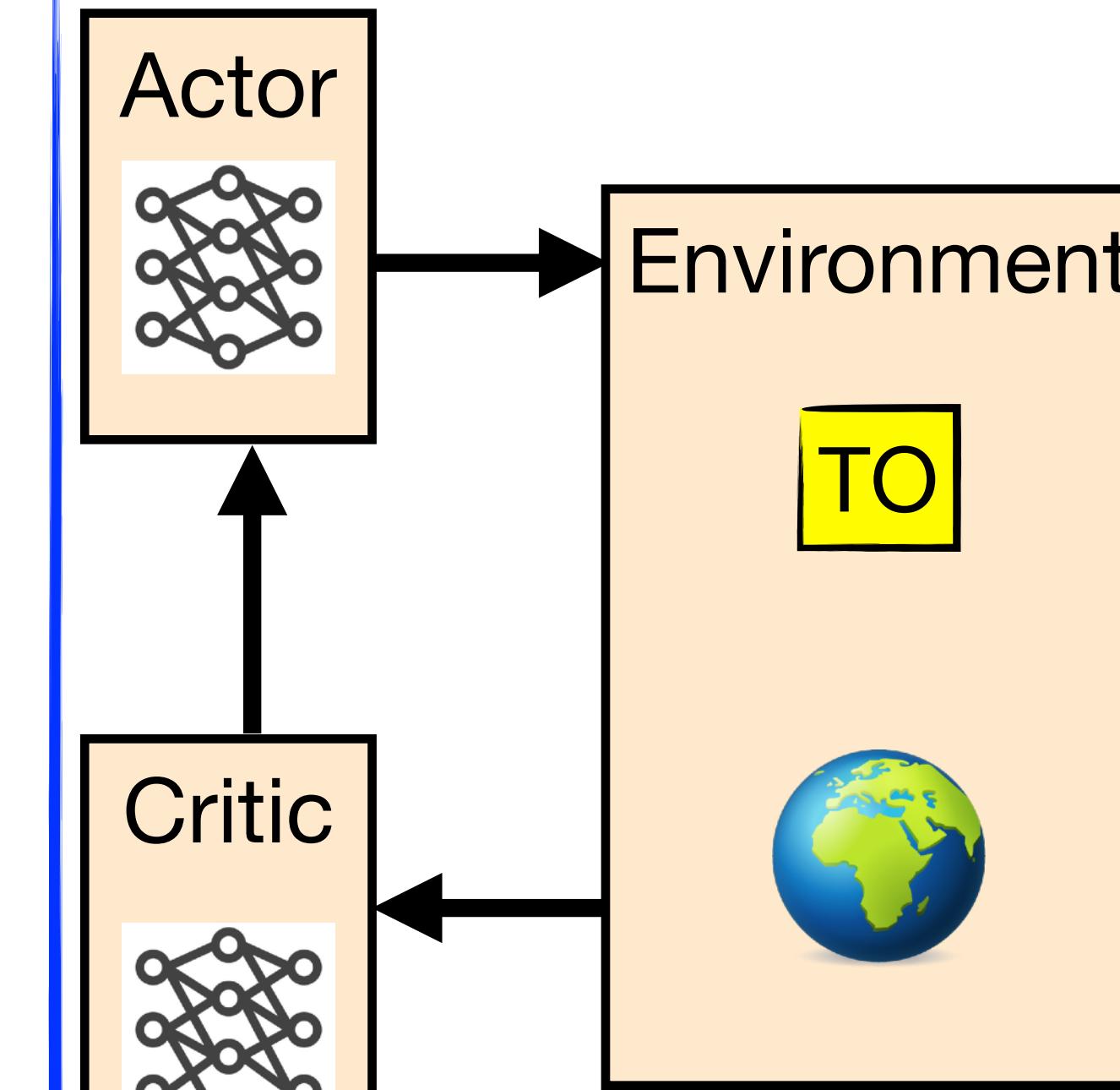
Actions are the output of TO



TO as part of the environment

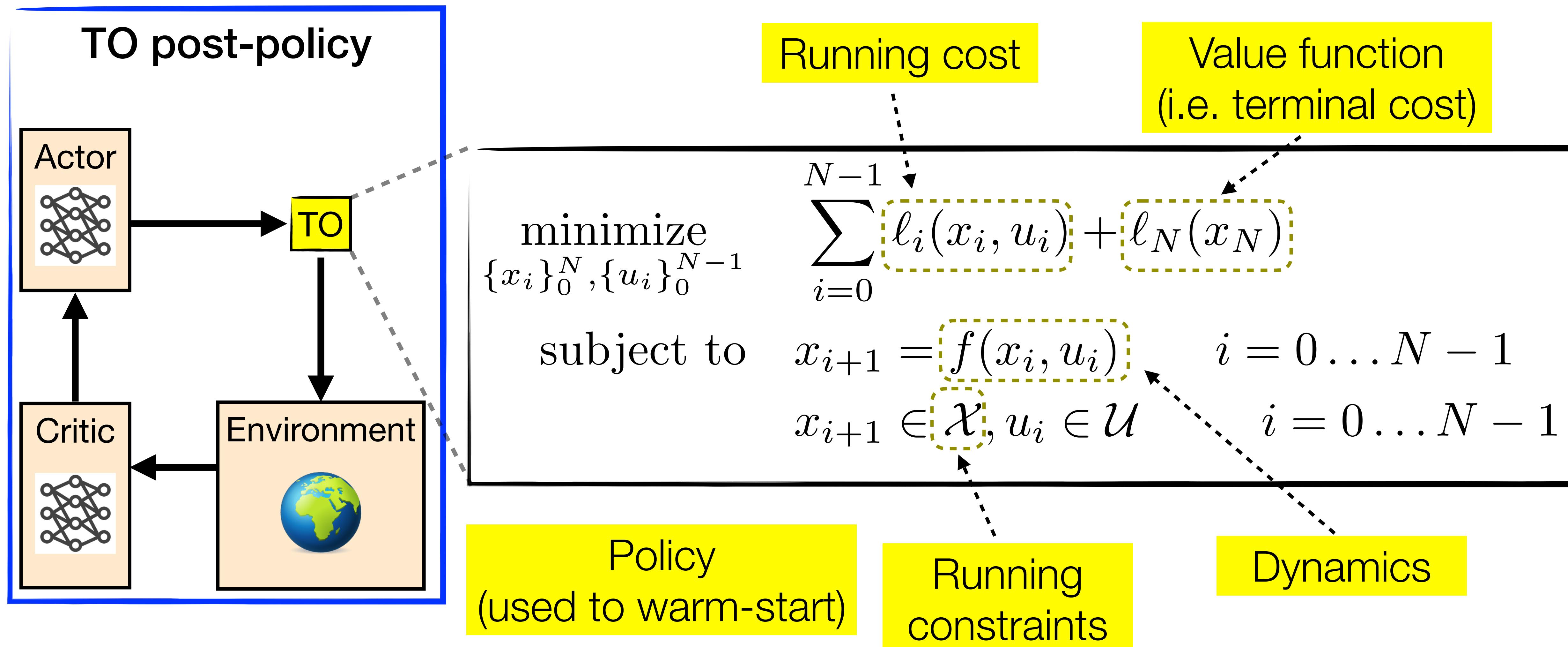
No need to differentiate TO!

Actions are the output of the actor policy

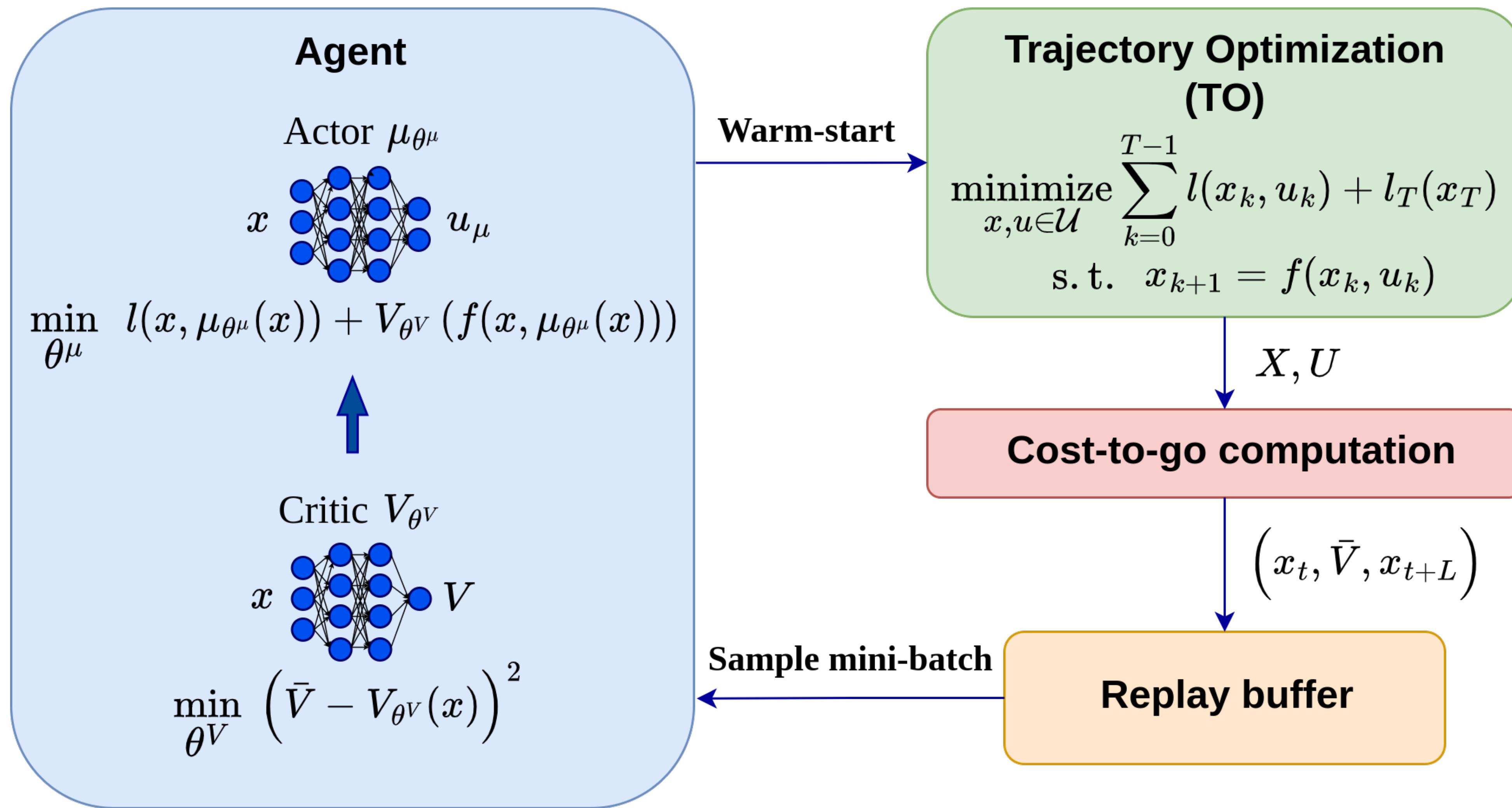


TO post-policy

What should the policy learn?

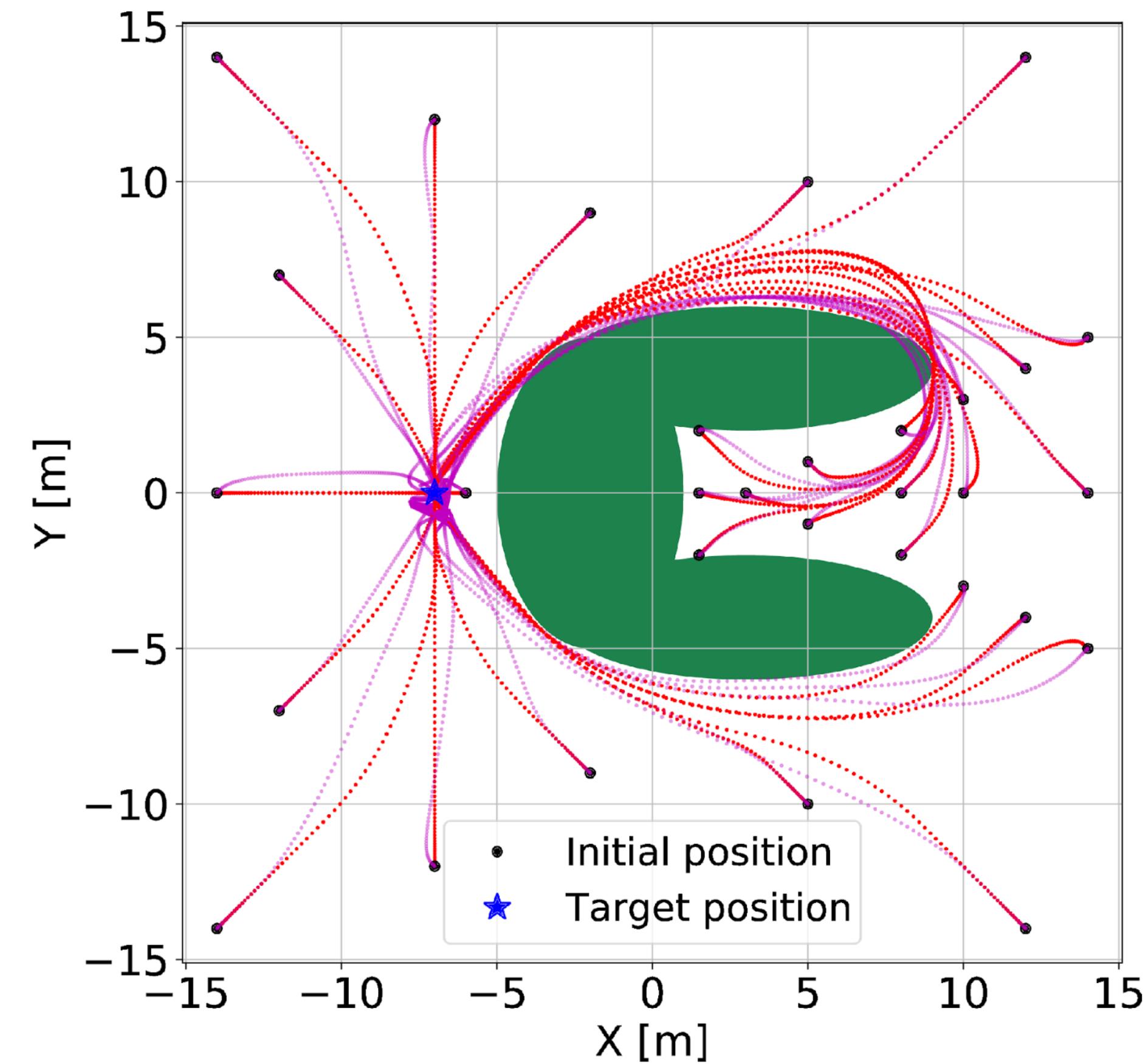


CACTO



Results

Task: find shortest path to target using low control effort and avoiding obstacles

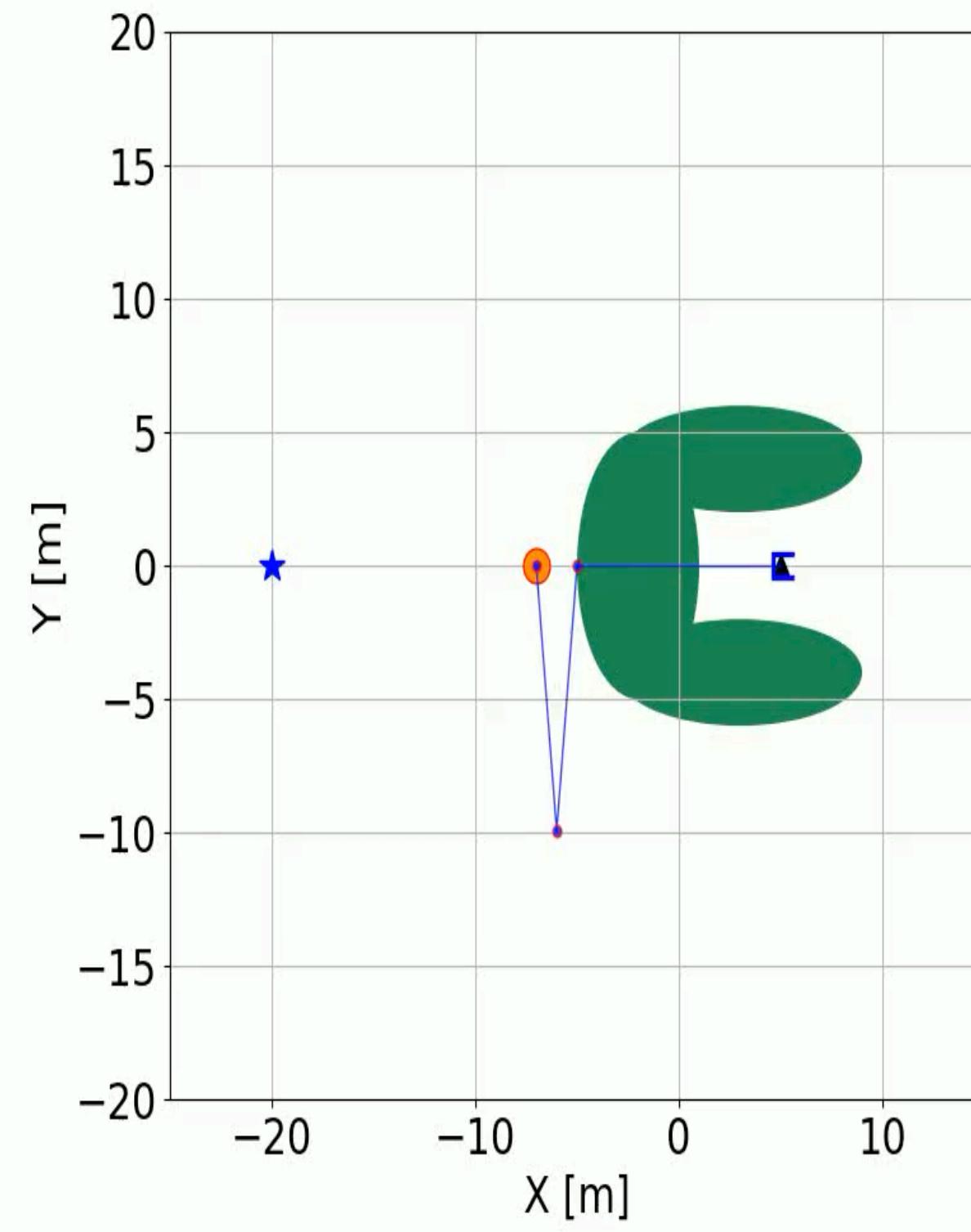


Systems: 2D single/double integrator, 6D car model, 3-joint manipulator

Results: 3-DoF Manipulator

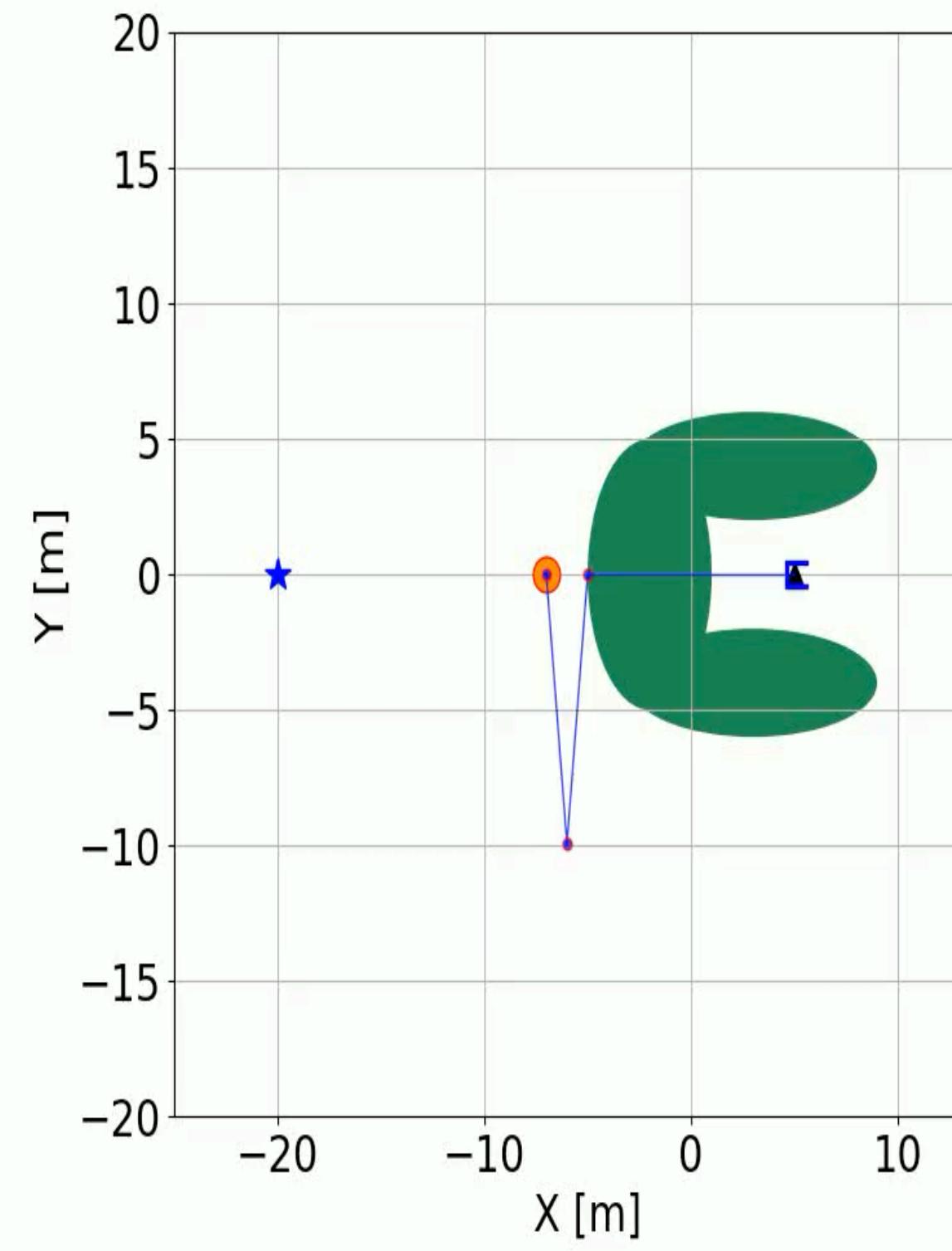
Initial Conditions

warm-start



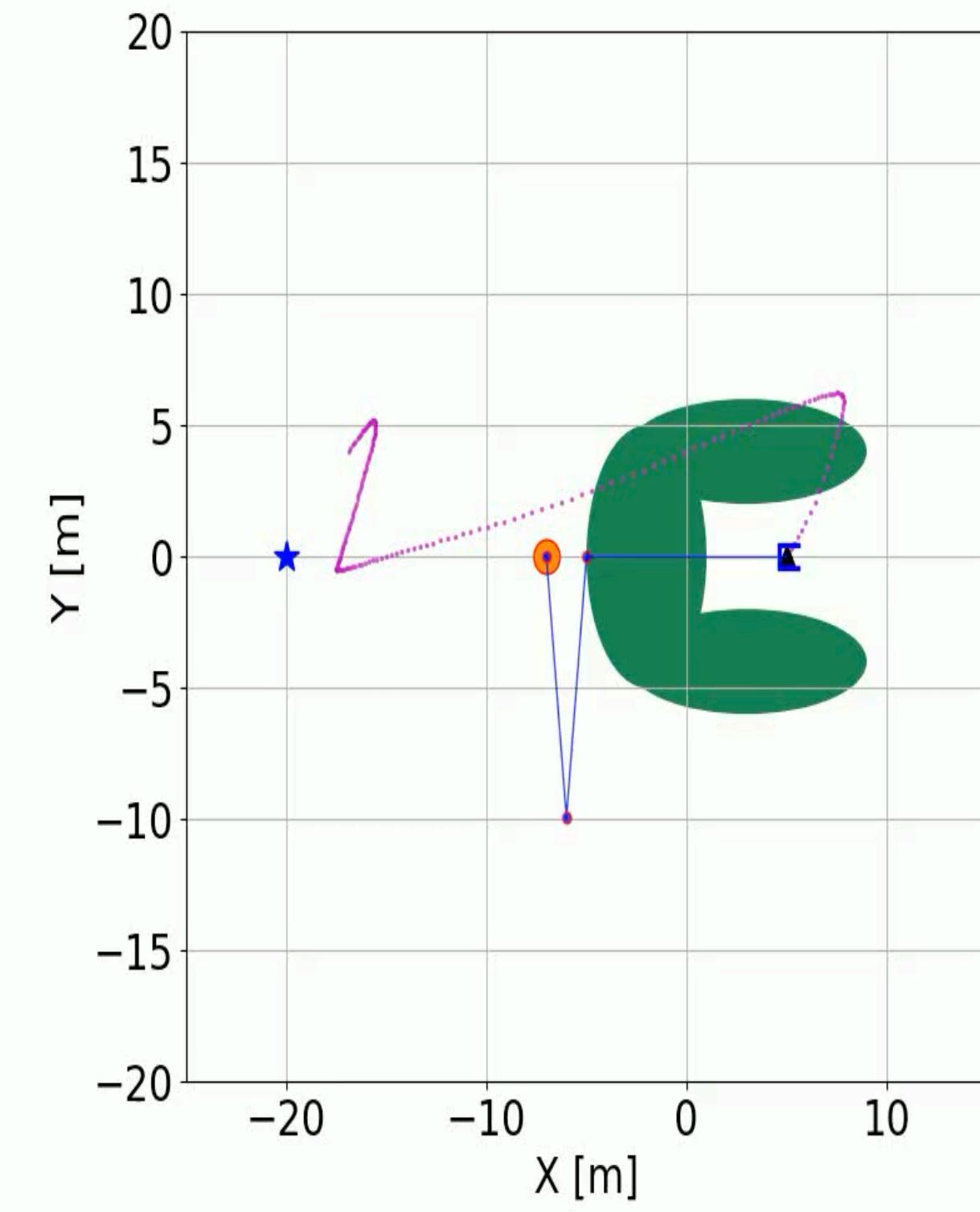
Cost = 70800

Random
warm-start



Cost = 88647

CACTO
warm-start



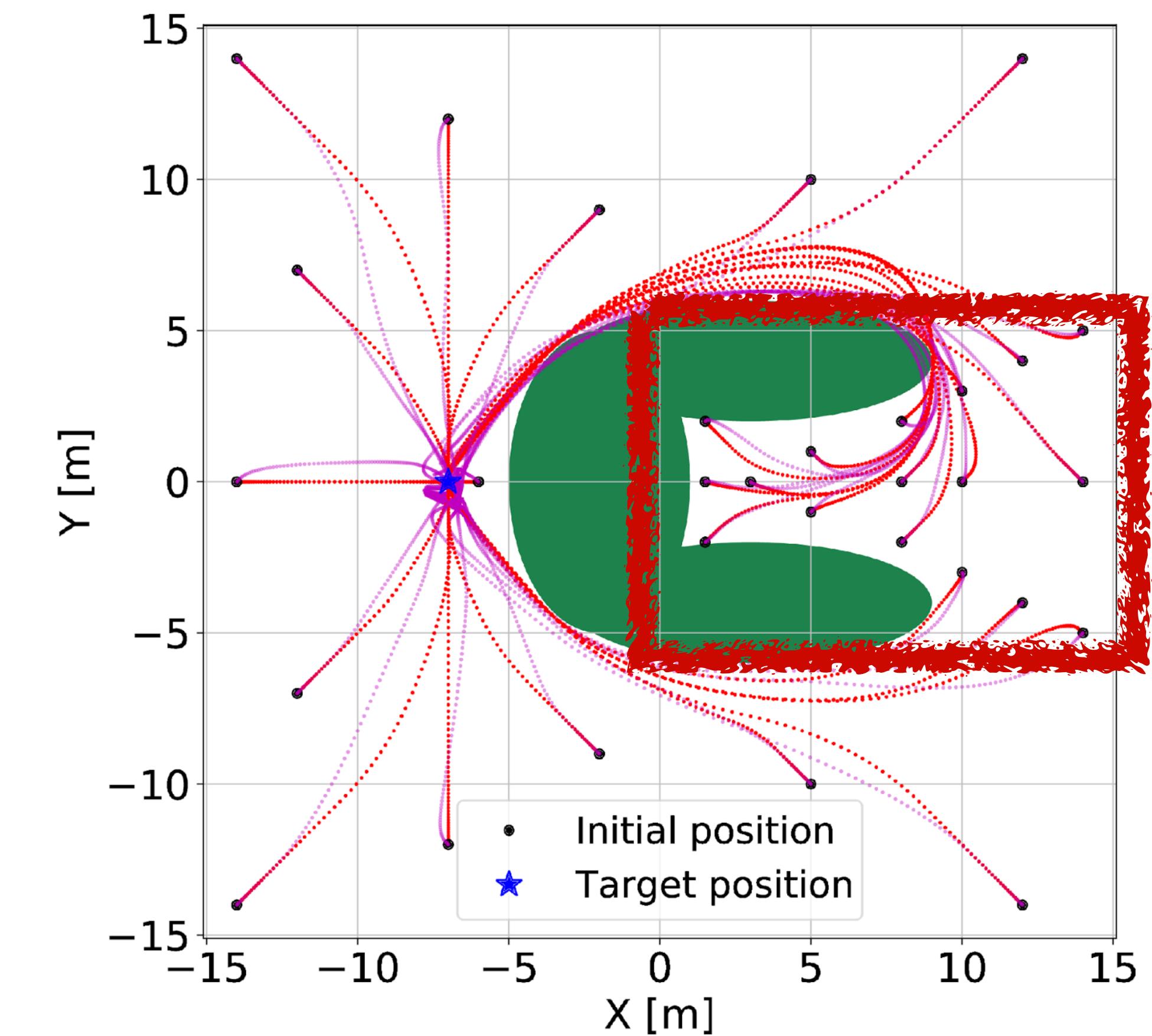
Cost = -145875

Comparison: CACTO vs TO

% of times TO finds better solution if warm-started with CACTO rather than:

- Random values
- Initial conditions (ICS) for states, zero for other variables

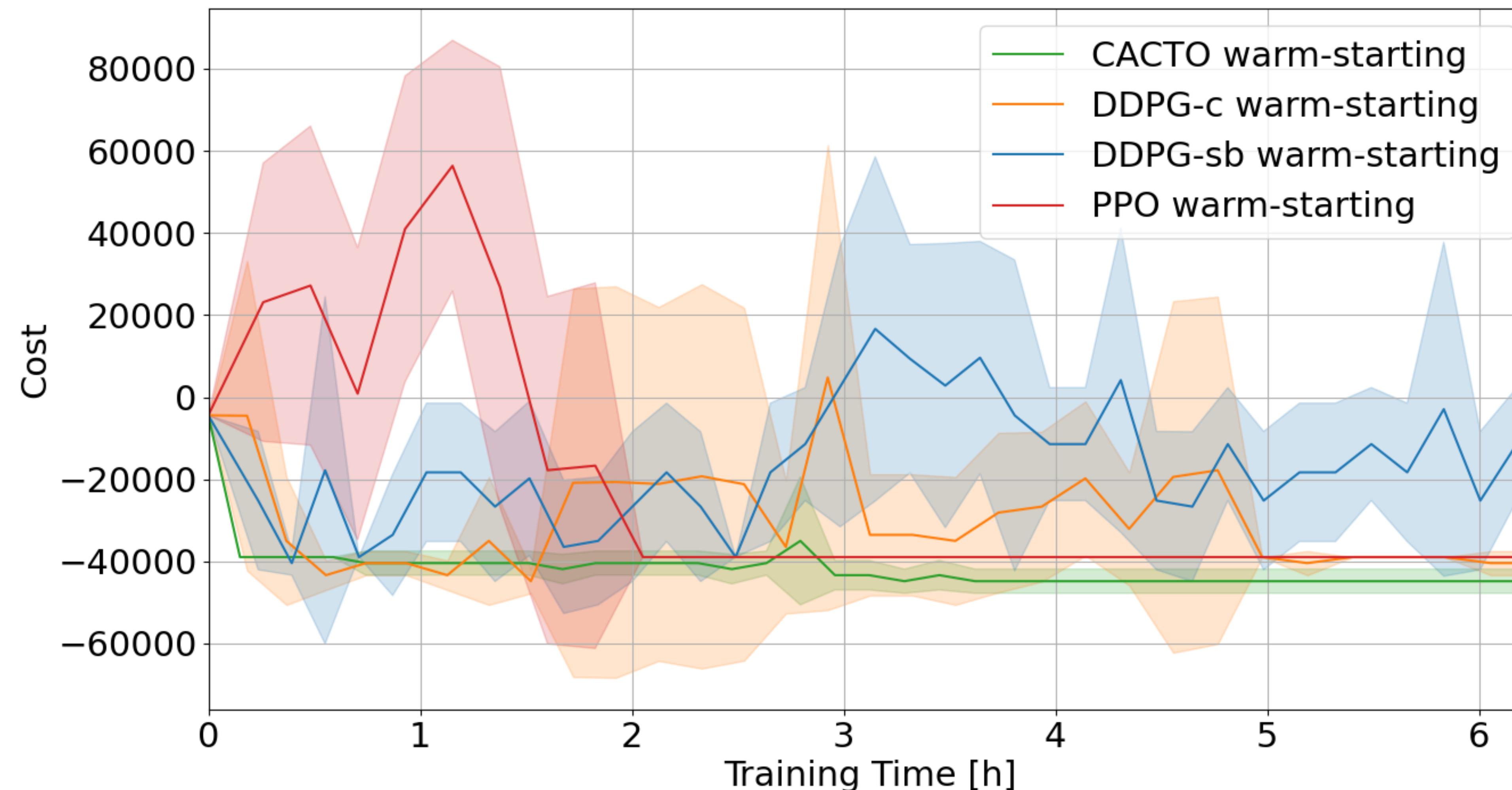
System	Hard Region	
	CACTO < (\leq) Random	CACTO < (\leq) ICS
2D Single Integrator	99.1% (99.1%)	92% (99.1%)
2D Double Integrator	99.9% (99.9%)	92% (99.1%)
Car	100% (100%)	92.9% (100%)
Manipulator	87.5% (87.5%)	100% (100%)



2D Double Integrator - CACTO warm-start

Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies



CACTO - Conclusions

- Novel RL scheme exploiting Trajectory Optimization
 - Proof of **global convergence** in discrete-space setting
 - **Empirically superior** to TO and RL alone

On-going/future work

- Fully-**GPU** implementation
- Handle **uncertainties**
- Handle **sensor** feedback
- Handle **state constraints**

Safe and Efficient Reinforcement Learning

Combining learning and trajectory optimization

Andrea Del Prete

UNIVERSITY
OF TRENTO

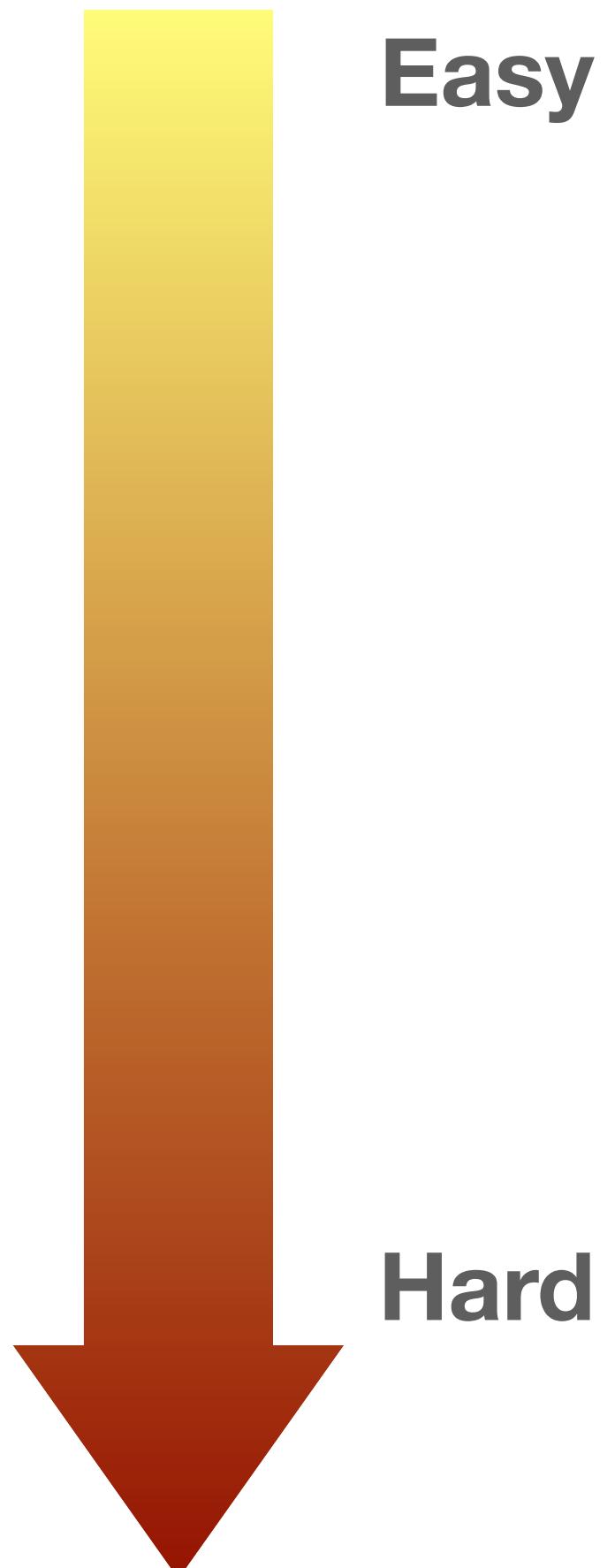
Safety Definition

What is safety?

- Joint angle, velocity, torque limits
- Collision **avoidance**
 - **Self**-collision
 - **Static** obstacles (e.g., table, wall)

$$x \in \mathcal{X}, u \in \mathcal{U}$$

- **Dynamic** obstacles (e.g., humans, other robots)
- Collision **management**:
 - Contact shall not result in pain or **injury**



State of the art

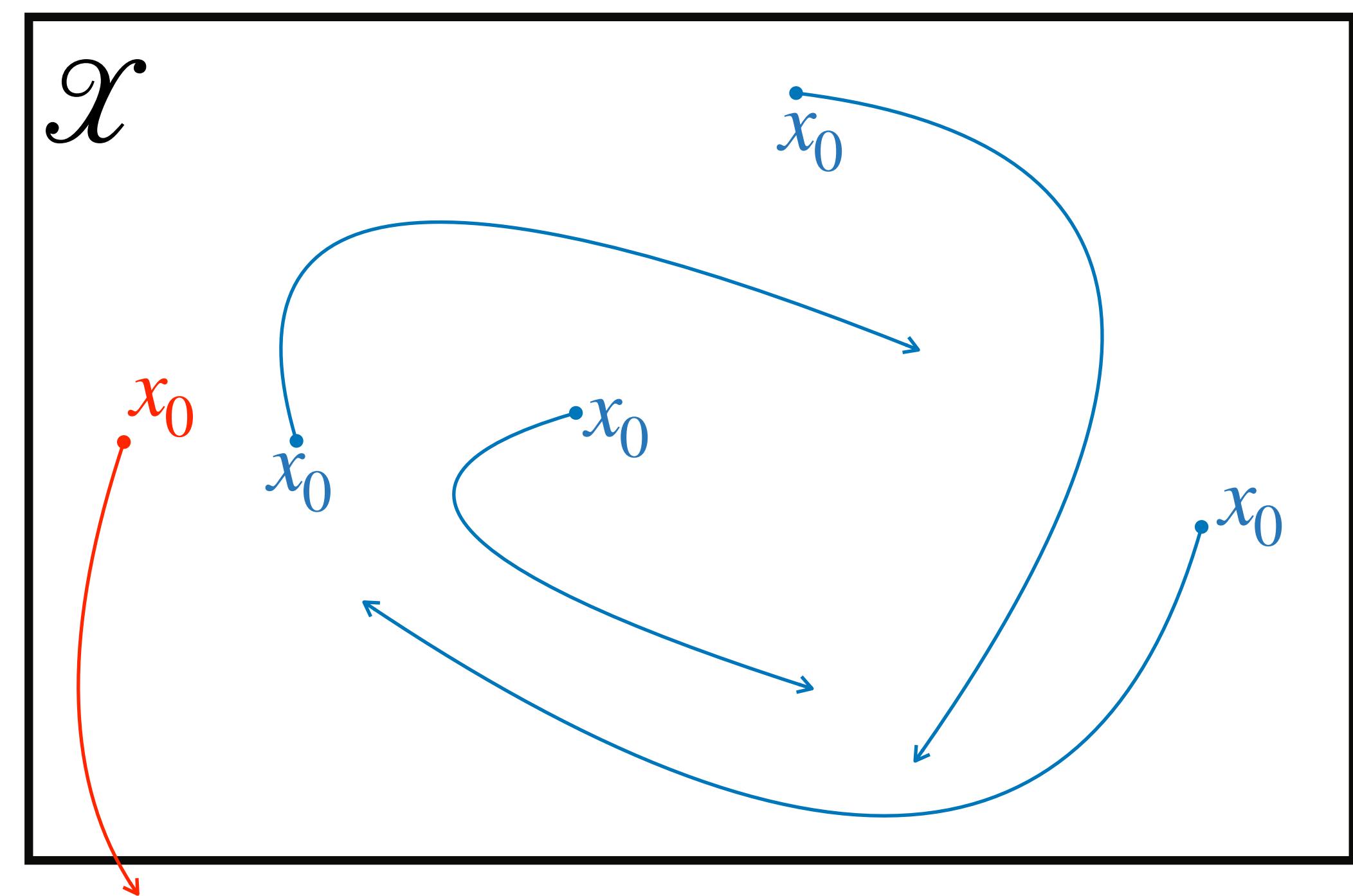
Constrained Dynamical System

Constrained **discrete-time** dynamical system:

$$x_{i+1} = f(x_i, u_i) \quad x \in \mathcal{X}, \quad u \in \mathcal{U}$$

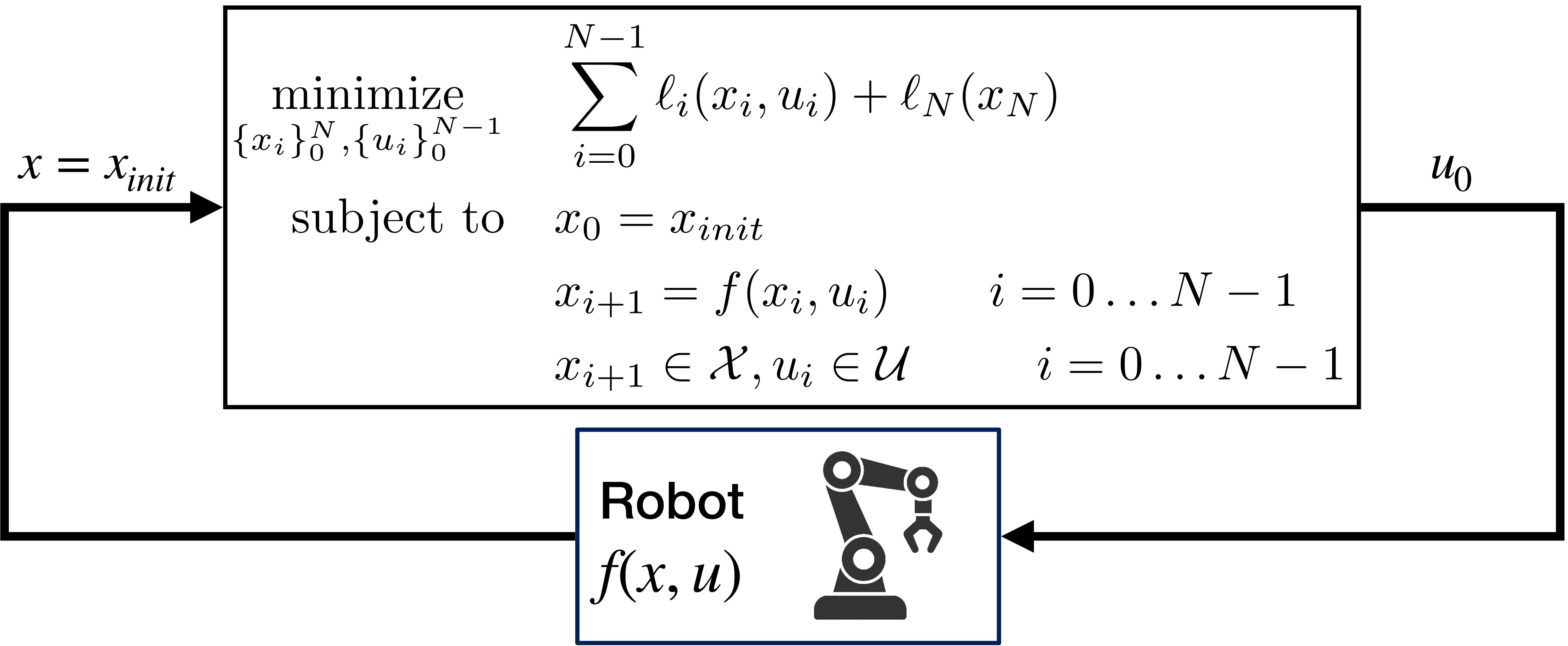
x is the state (positions, velocities)

u is the control input



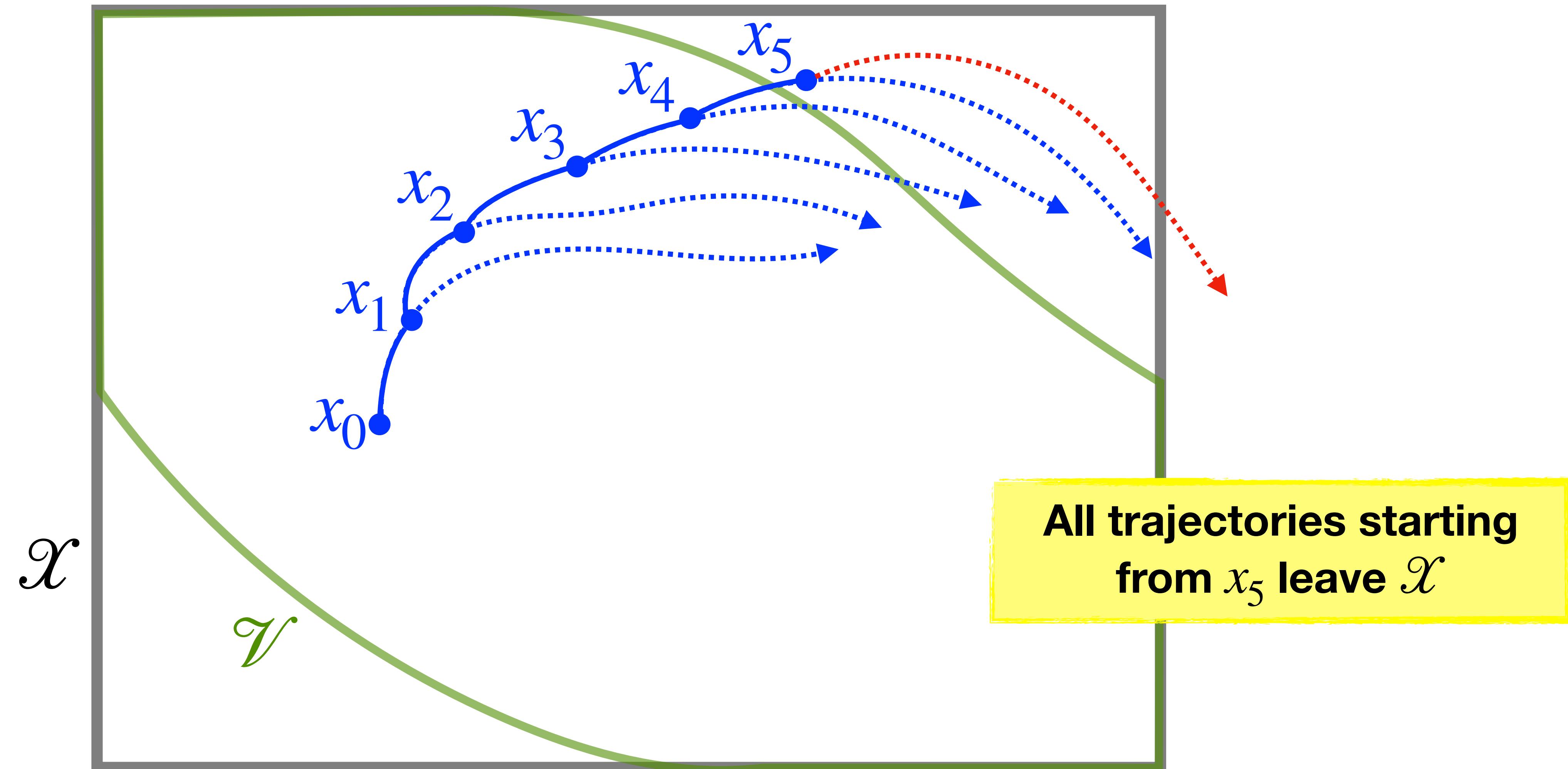
Model Predictive Control

Trajectory Optimization inside the control loop



Model Predictive Control

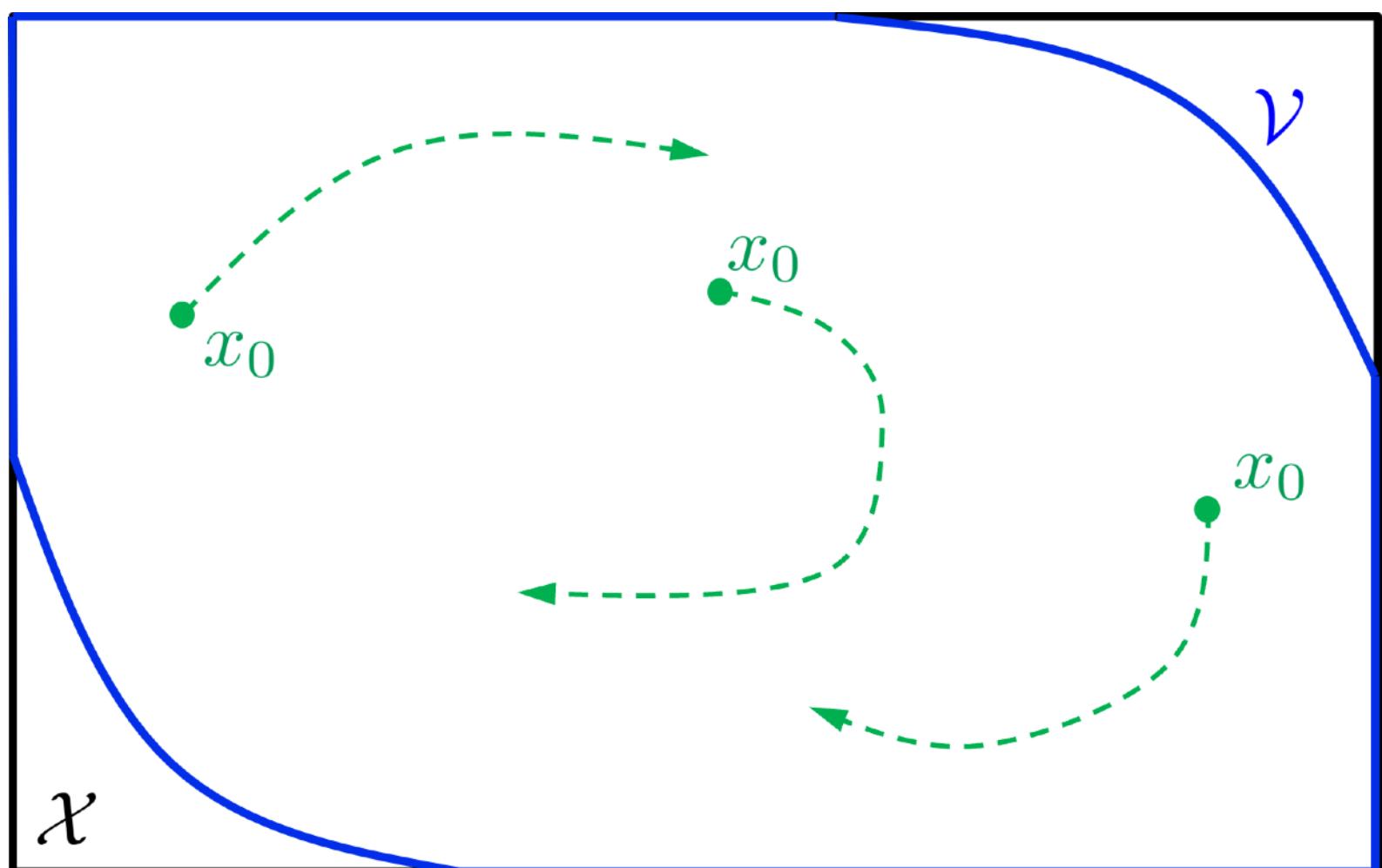
Can it ensure safety? No



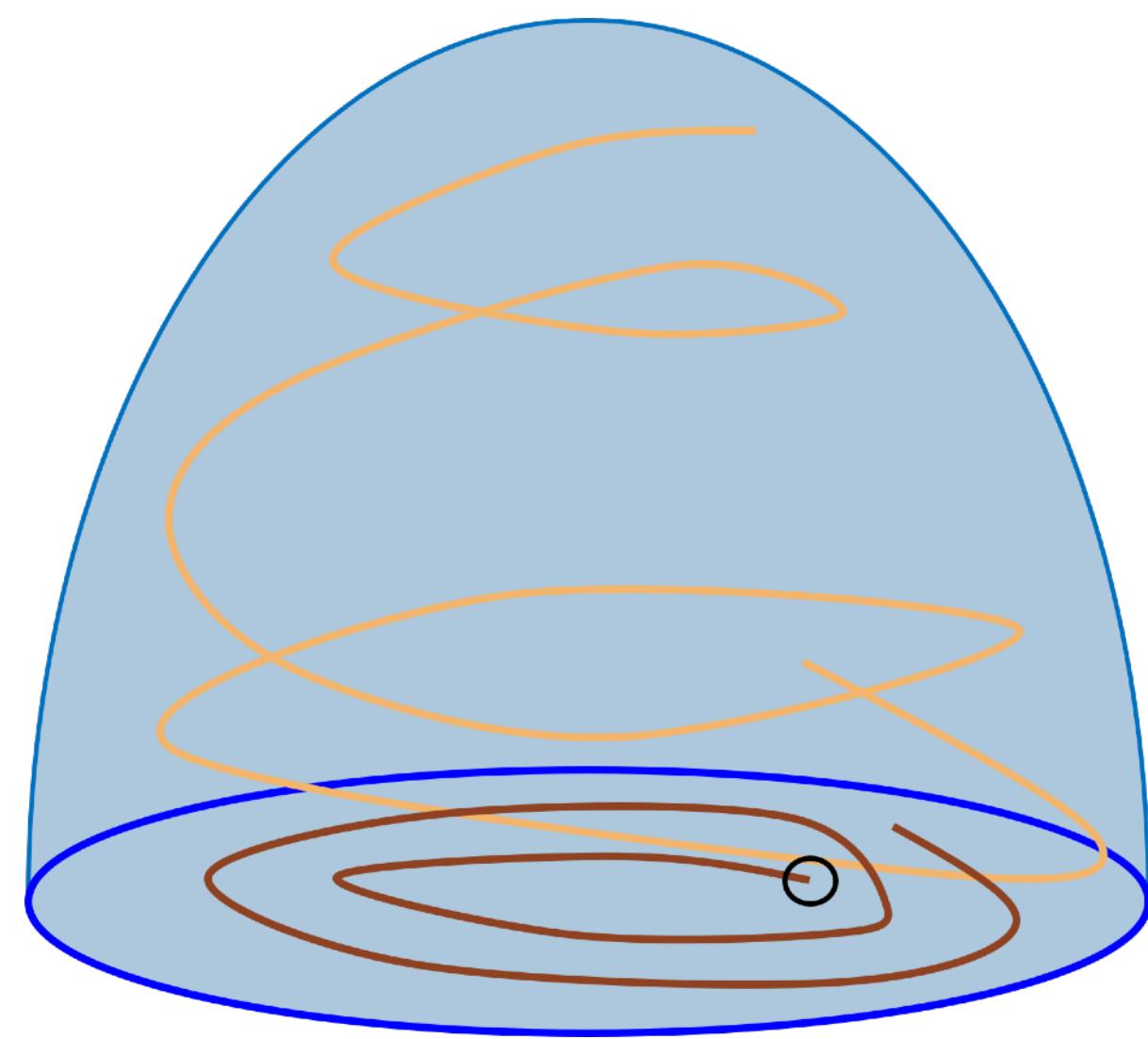
Safety Guarantees

State of the art

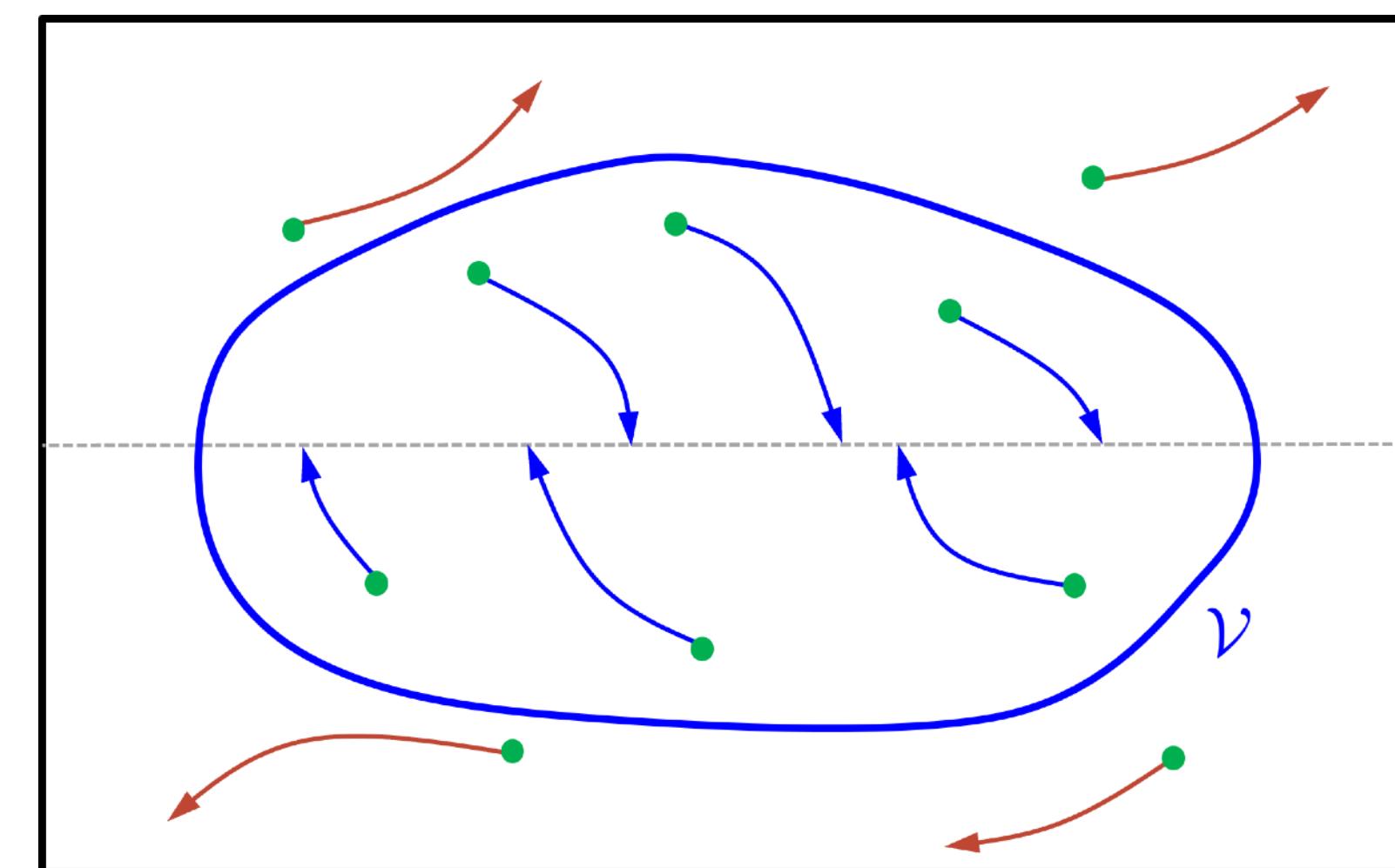
Control-Invariant Sets
(CIS)



Control Barrier Functions
(CBF)



Back-up Policies
(BUP)



Model Predictive Control

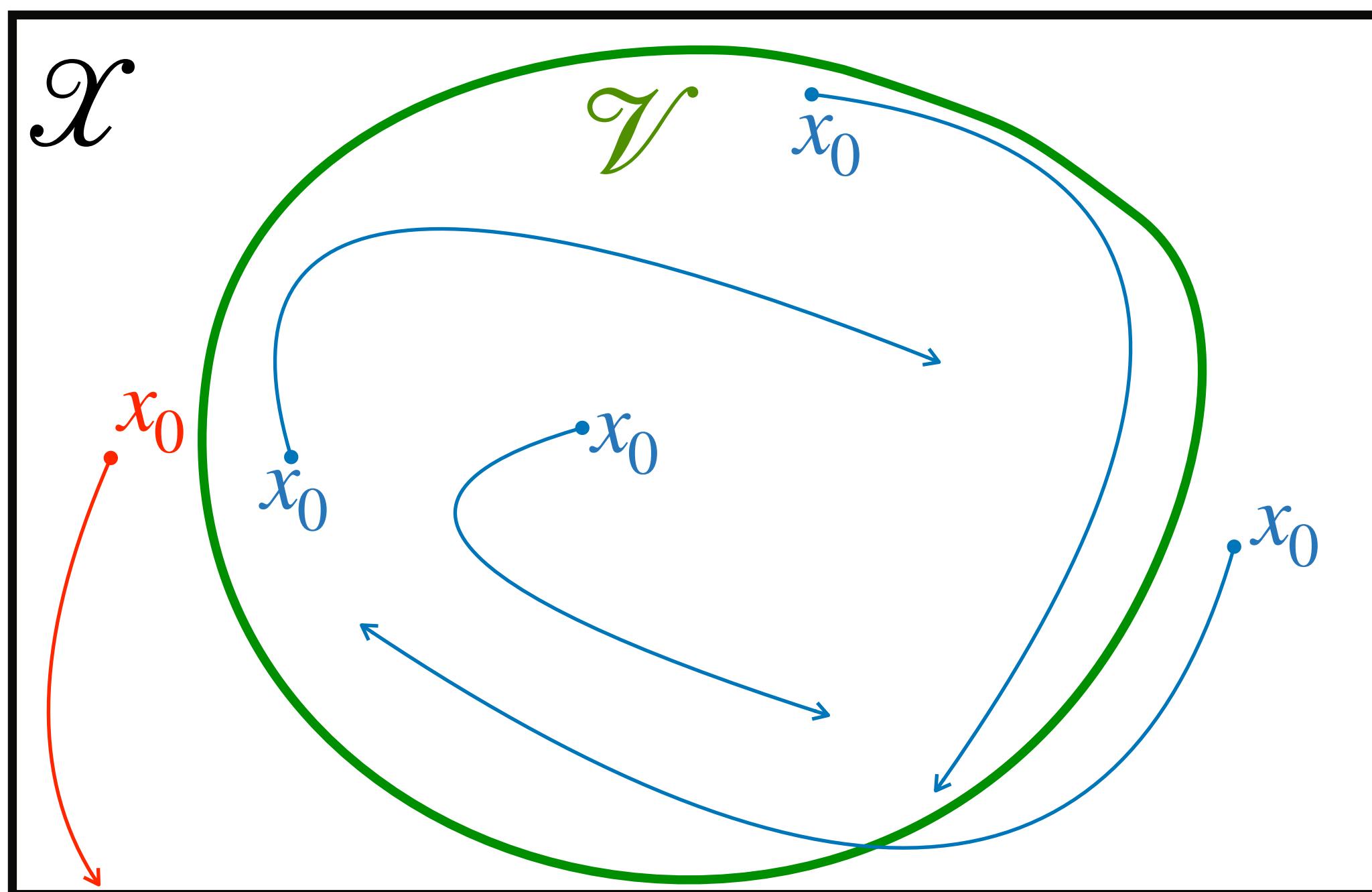
Quadratic Program

Reinforcement Learning

Safety via Control Invariant Sets

$\mathcal{V} \subseteq \mathcal{X}$ is a **control invariant** set

Once x is in \mathcal{V} , it **can remain** in \mathcal{V}



Recursive Feasibility

Model Predictive Control (MPC)

Using a CIS \mathcal{V} as terminal set ensures recursive feasibility in MPC

$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && x_N \in \hat{\mathcal{V}} \end{aligned}$$

What if the terminal set is an approximation of a CIS $\hat{\mathcal{V}} \approx \mathcal{V}$?

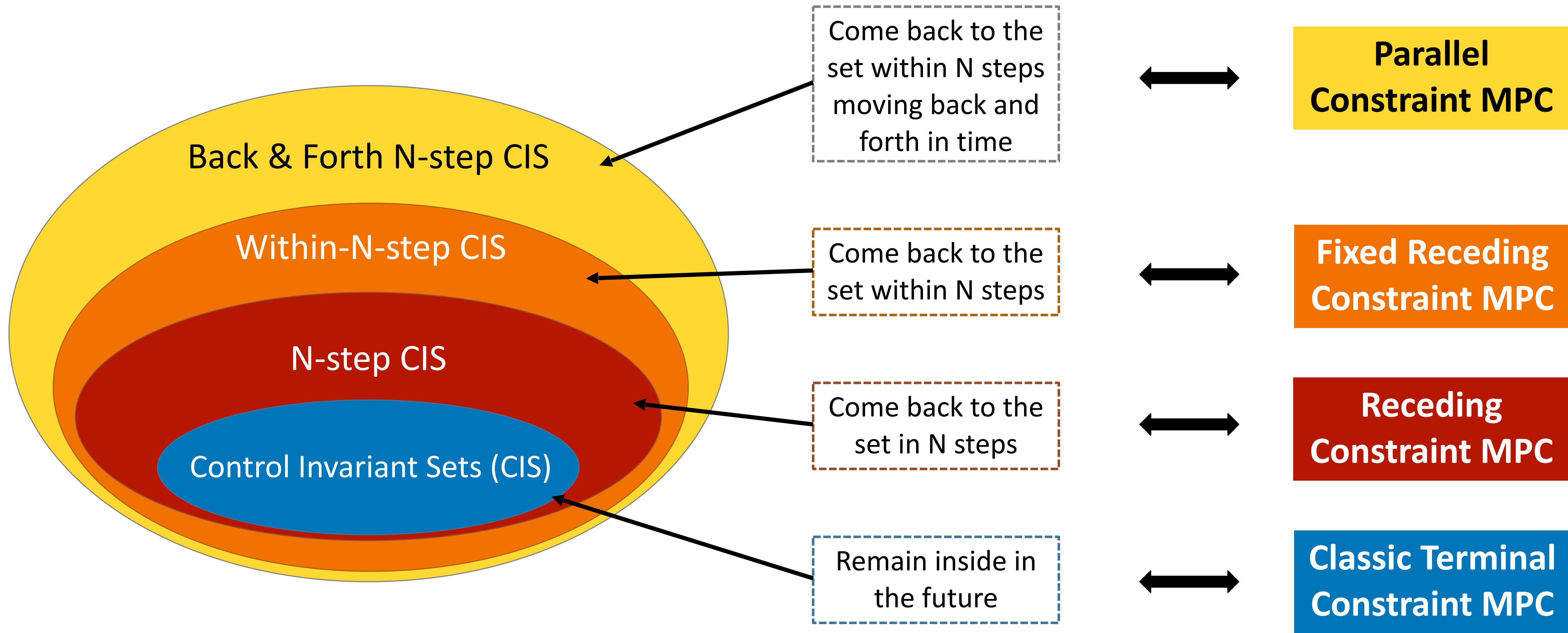
MPC problem can become unfeasible using $\hat{\mathcal{V}}$ instead of \mathcal{V} !

Beyond Control Invariant Sets

- CIS are **unknown** for nonlinear systems
- Numerical **approximation** techniques exist, however:
 - They are **computationally demanding** (curse of dimensionality)
 - A numerical approximation of a CIS is **not** a CIS
 - → **all safety guarantees are lost!**

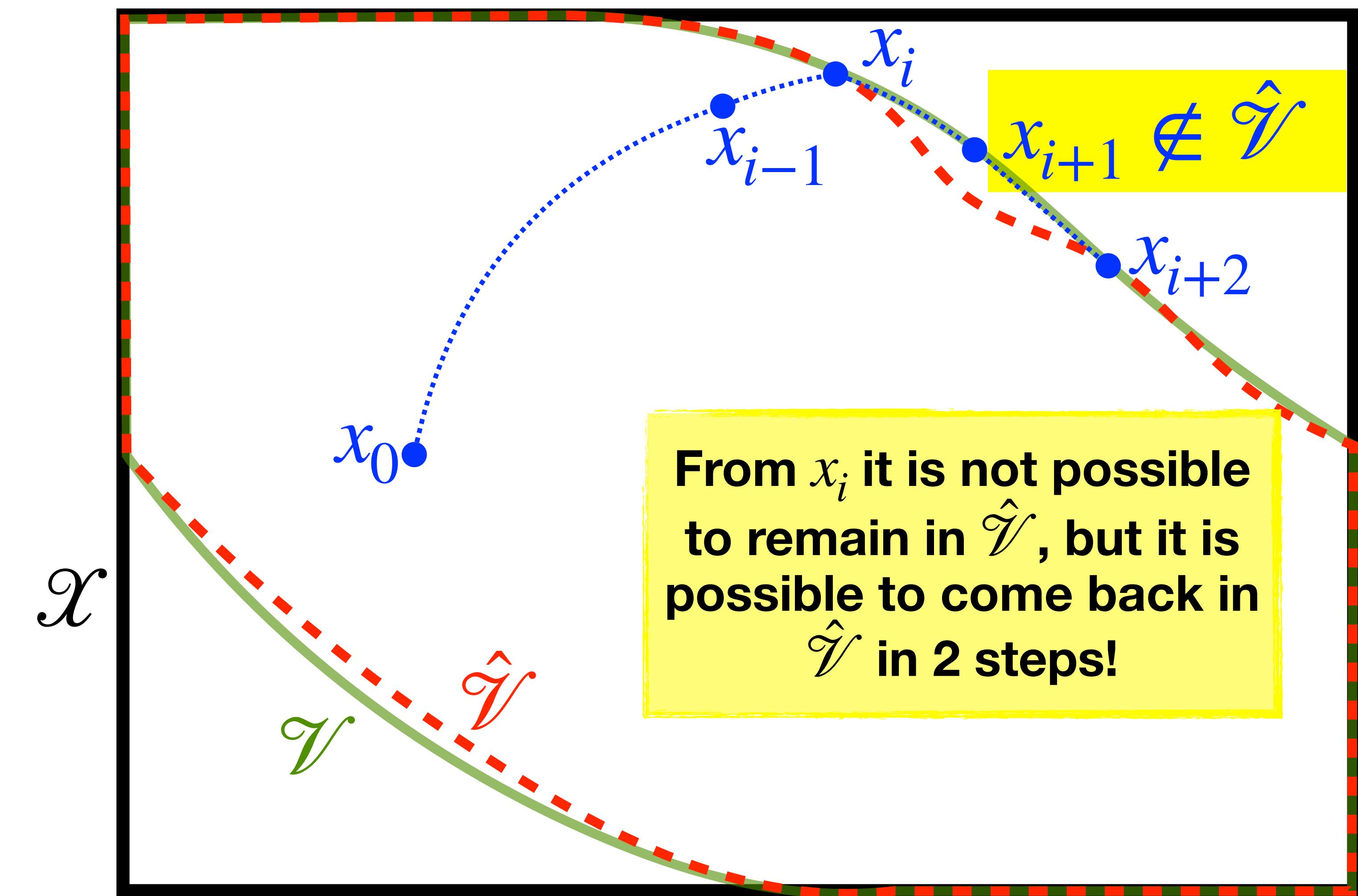
**Do we really need Control Invariant Sets
to ensure safety?**

Beyond Control Invariant Sets



N-Step Control Invariant Set

- $\hat{\mathcal{V}}$ is an **N-Step CIS** iff:
- For every $x_0 \in \hat{\mathcal{V}}$ it is possible to have $x_N \in \hat{\mathcal{V}}$
- **Weaker** condition than classic control invariance
- Possible to guarantee safety with novel MPC schemes



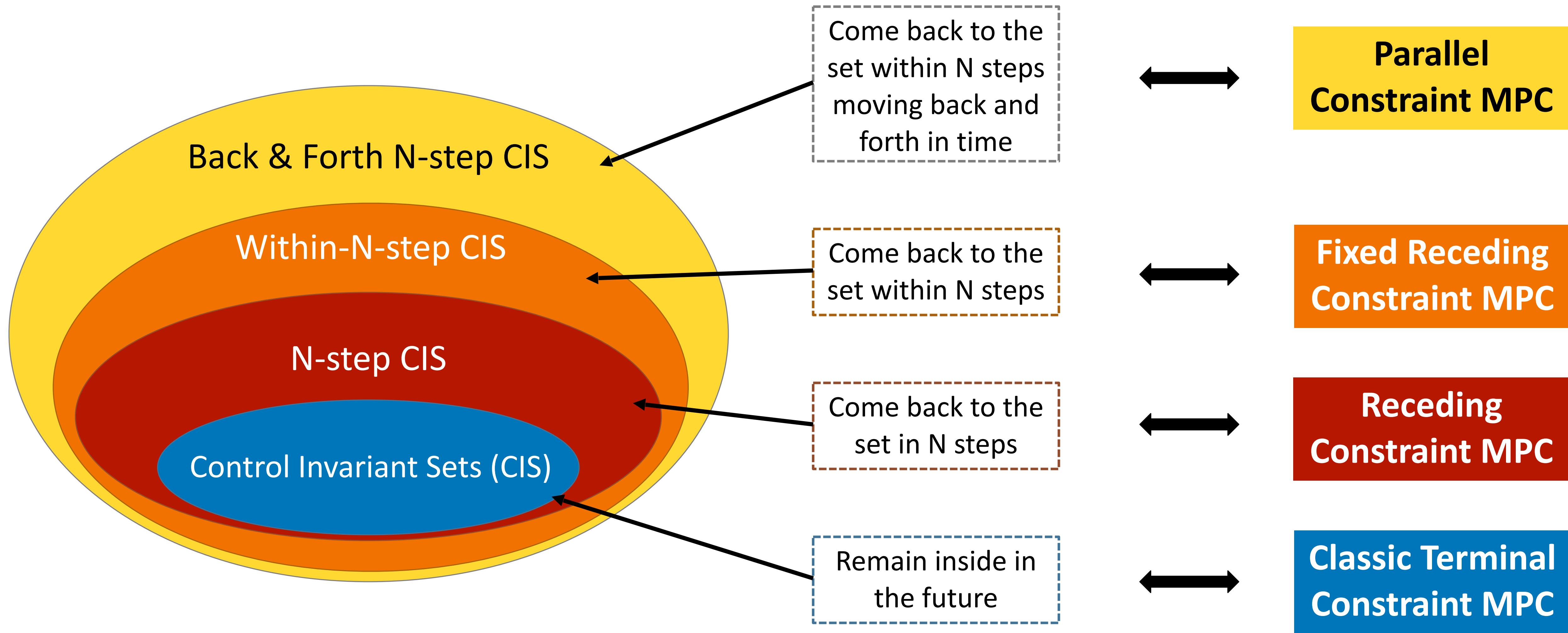
Beyond Control Invariant Sets

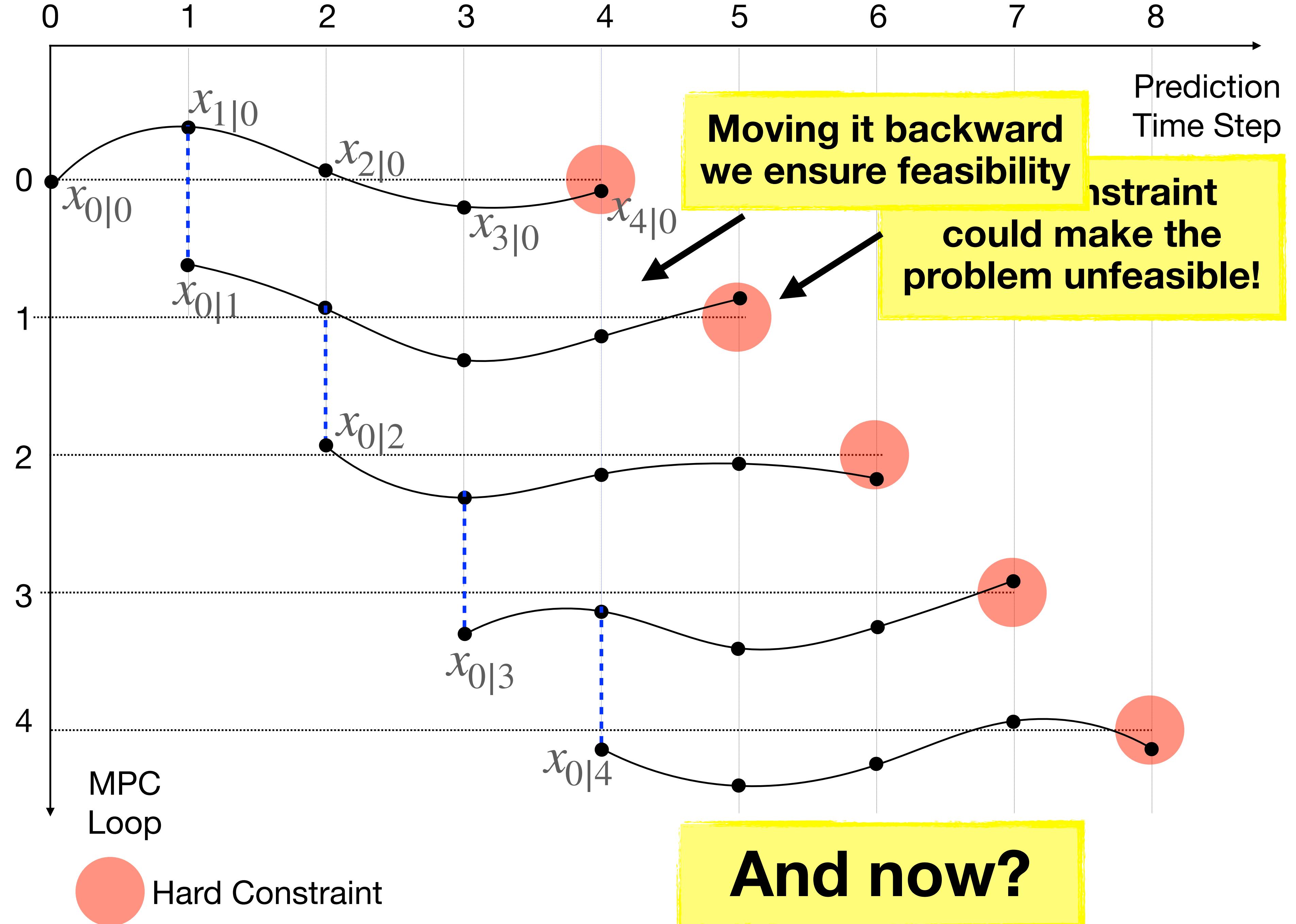
- Hypotheses:
 - new **sets** are easier to compute
 - new **controllers** work better even with approximate CIS

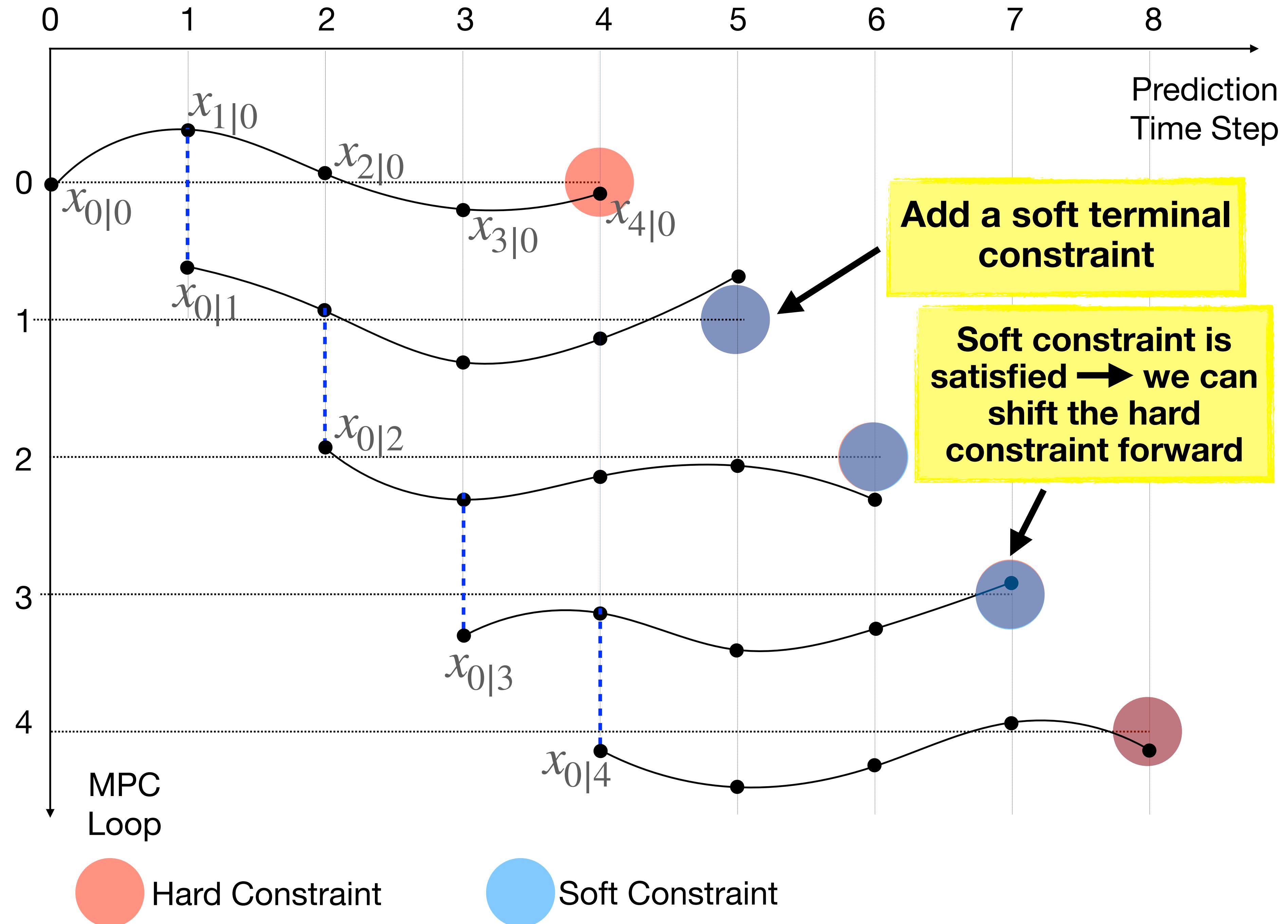
Receding-Constraint Model Predictive Control

Gianni Lunardi
Asia La Rocca
Matteo Saveriano
Andrea Del Prete

Beyond Control Invariant Sets







What if the problem gets unfeasible?

Safe Abort Procedure

Assume $\hat{\mathcal{V}} \subseteq \mathcal{V}$ \rightarrow Even if $\hat{\mathcal{V}}$ is not a CIS, any state in $\hat{\mathcal{V}}$ is “safe”

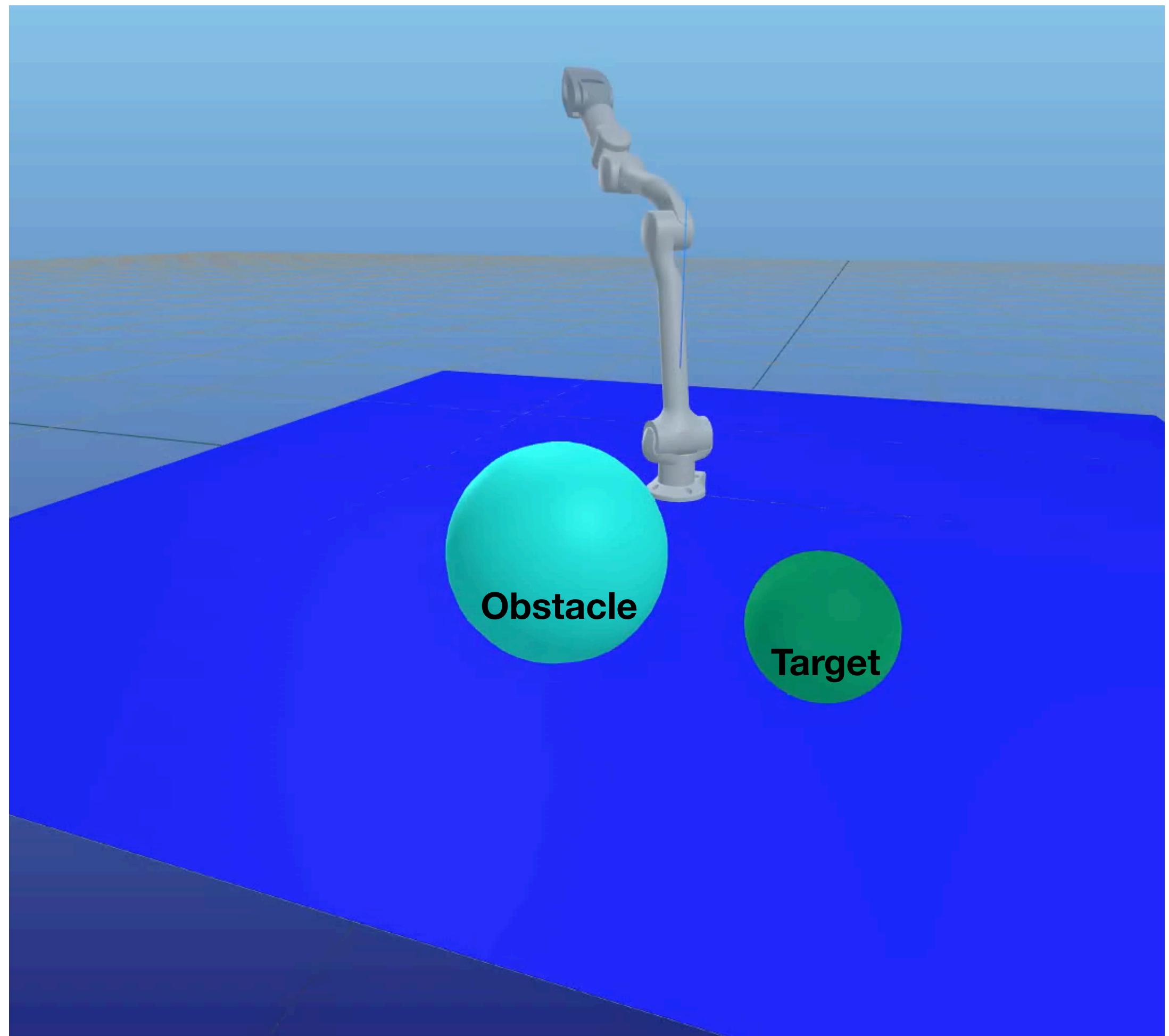
- **Safe Abort:**

- If MPC problem becomes **unfeasible**
- Find (and follow) trajectory that:
 - starts from last predicted state in $\hat{\mathcal{V}}$
 - reaches an **equilibrium** state
- Such a trajectory is **guaranteed** to exist

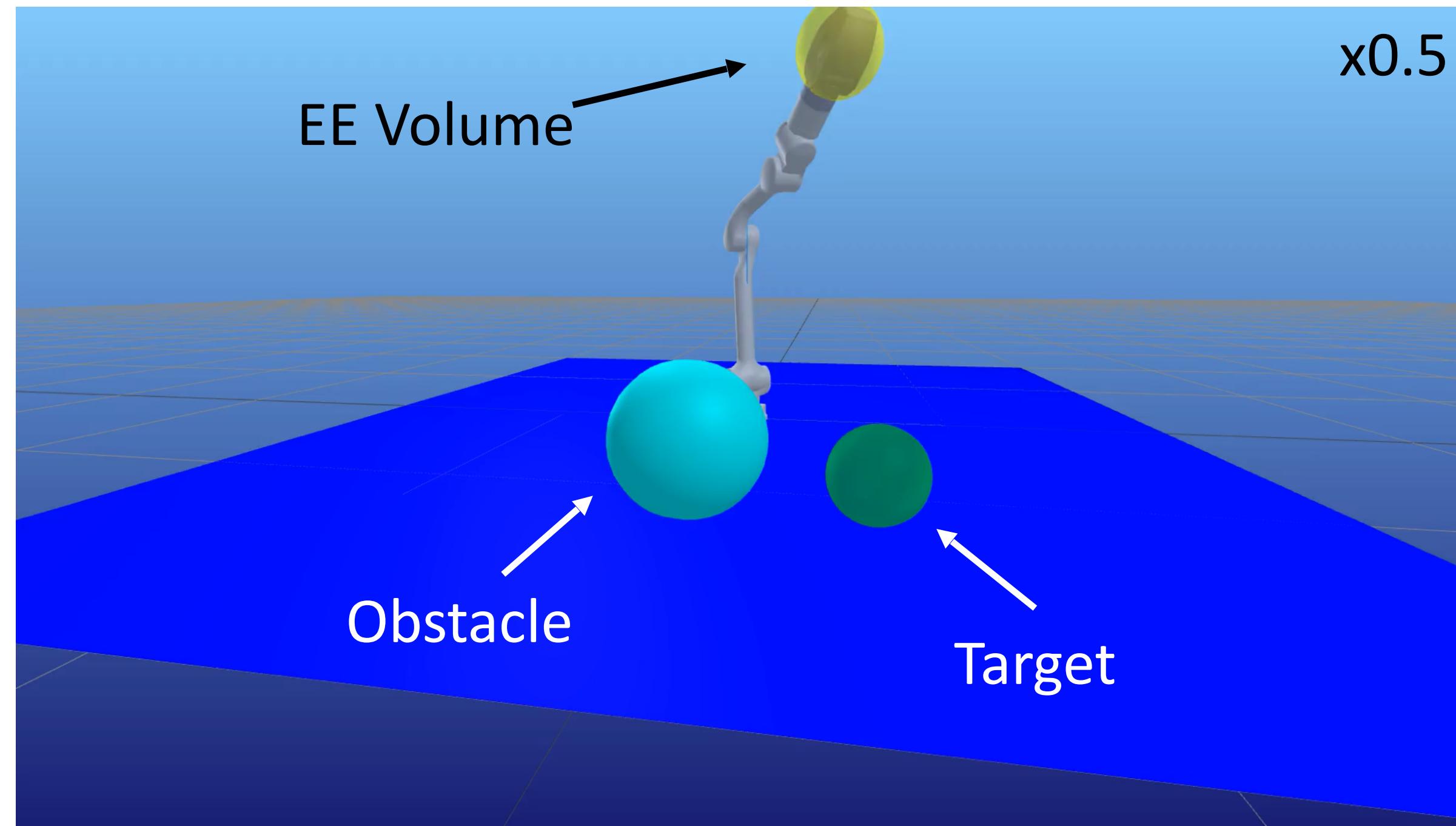
$$\begin{aligned} & \underset{\{x_i\}_0^N, \{u_i\}_0^{N-1}}{\text{minimize}} && \sum_{i=0}^{N-1} \ell_i(x_i, u_i) + \ell_N(x_N) \\ & \text{subject to} && x_0 = x_{init} \\ & && x_{i+1} = f(x_i, u_i) \quad i = 0 \dots N-1 \\ & && x_i \in \mathcal{X}, u_i \in \mathcal{U} \quad i = 0 \dots N-1 \\ & && x_N = x_{N-1} \end{aligned}$$

Simulation Results

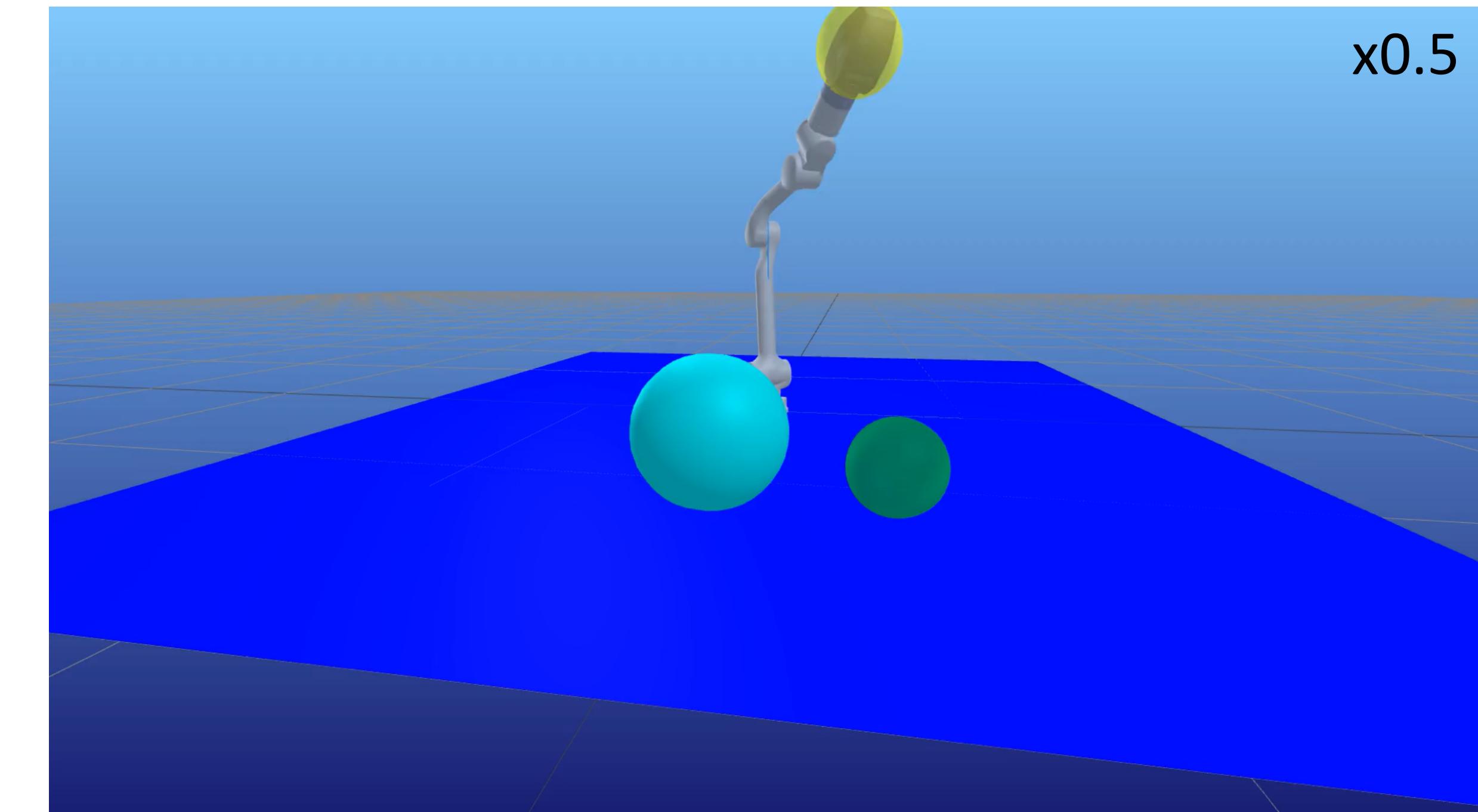
- Comparing several **MPC formulations**
- 4 **DoF** Z1 robot manipulator
- **Acados** software library
- Safe set $\hat{\mathcal{V}}$ represented with **neural network**
- 500 simulations from random initial configurations
- Max horizon $N=45$ to ensure **computation time $< dt$** (5 ms)
- <https://github.com/idra-lab/safe-mpc>



Setpoint Task

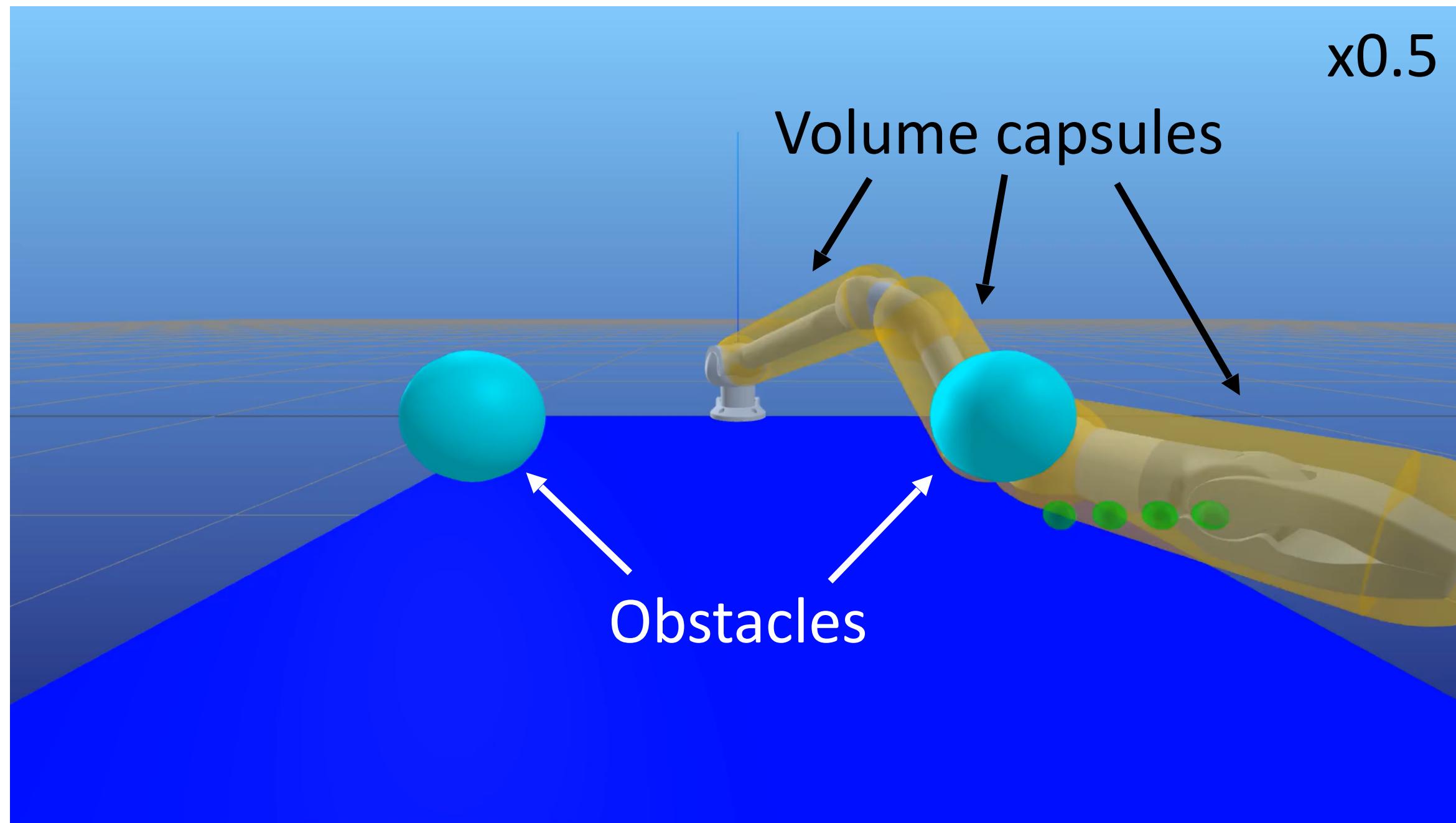


Naive MPC

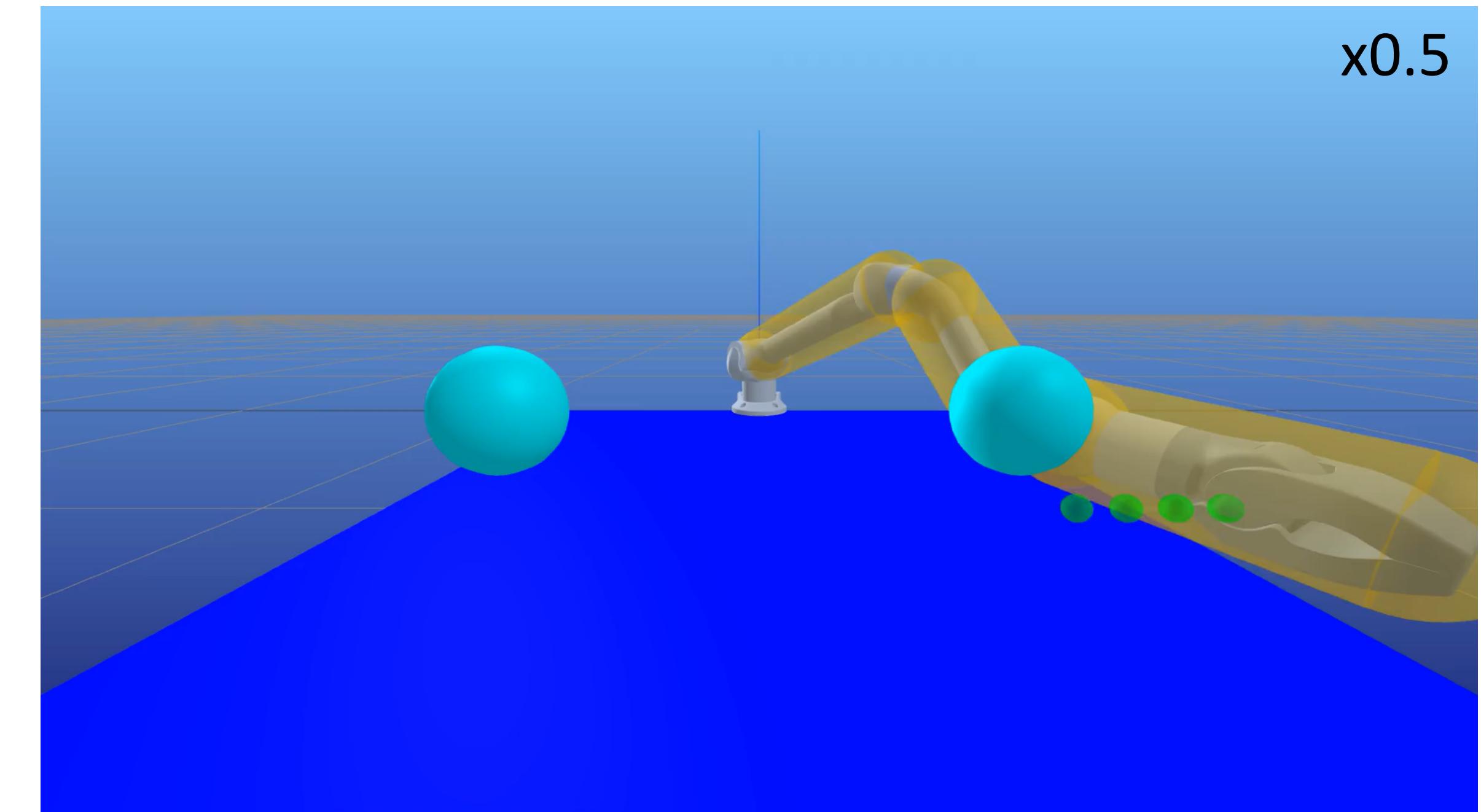


Receding MPC

Trajectory Tracking



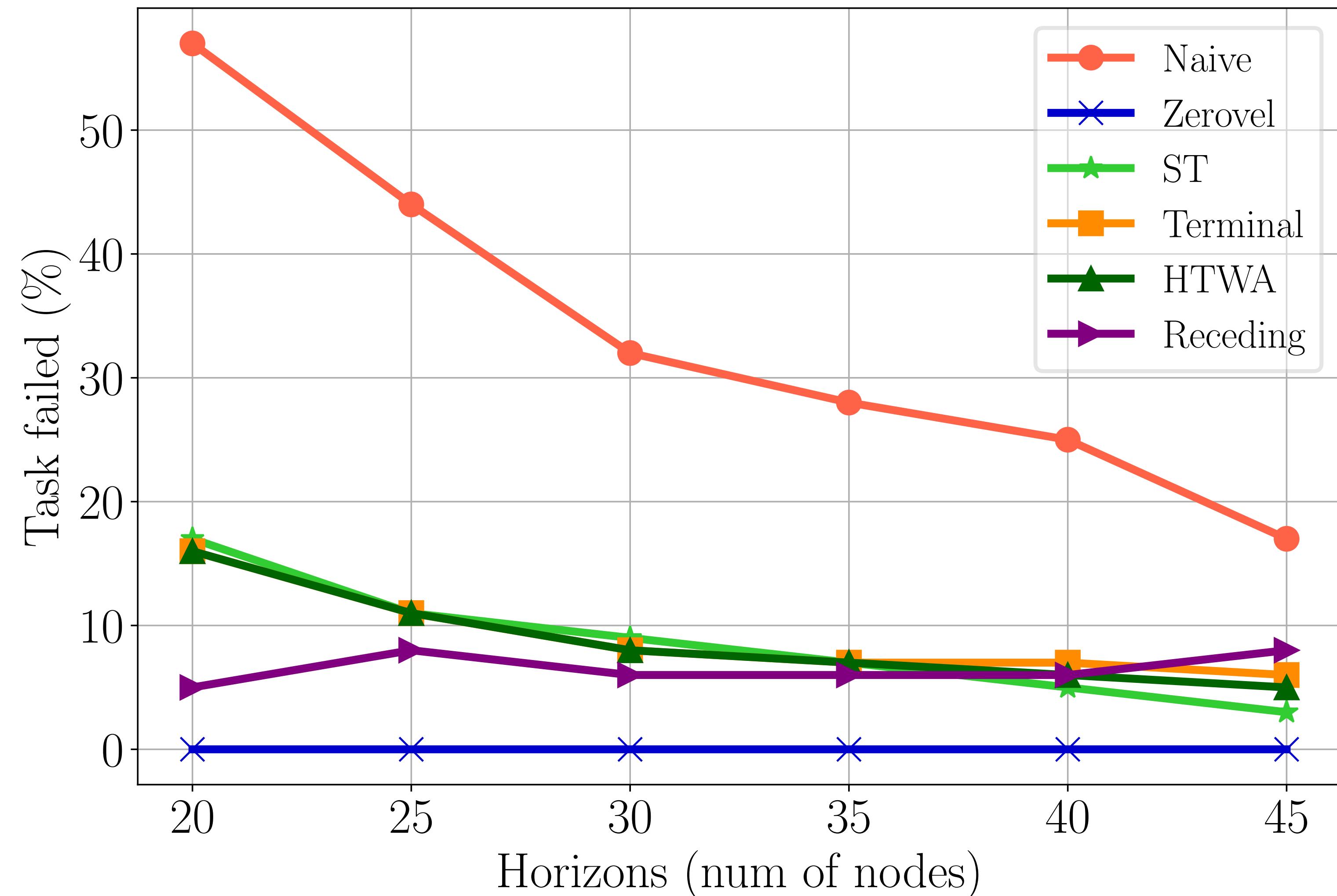
Naive MPC



Receding MPC

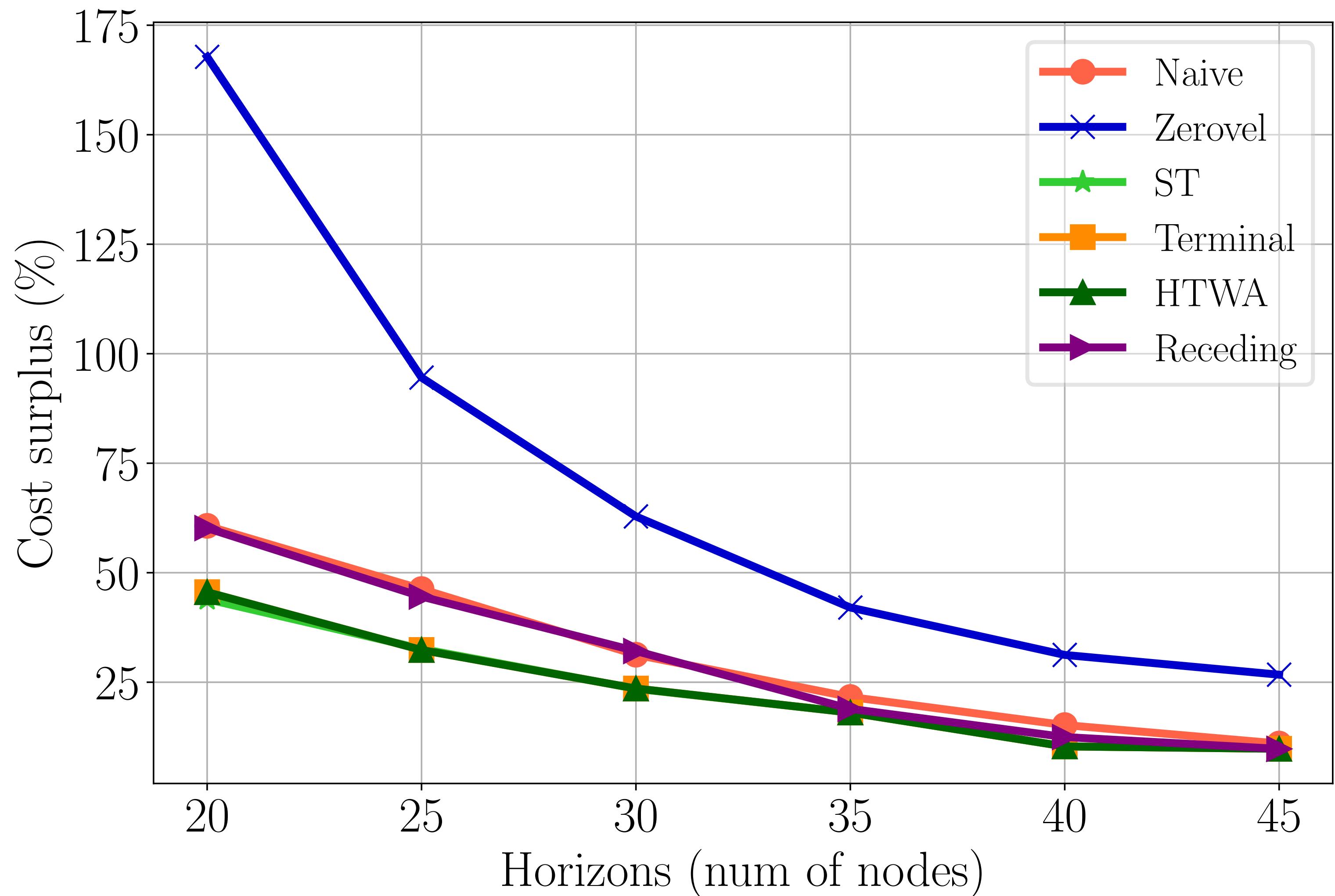
Simulation Results - Receding

- Naive: standard MPC formulation
- Zerovel: terminal constraint imposing zero velocity
- ST: soft terminal constraint $\hat{\mathcal{V}}$
- Terminal: hard terminal constraint $\hat{\mathcal{V}}$
- HTWA: hard terminal constraint $\hat{\mathcal{V}}$ with safe abort strategy



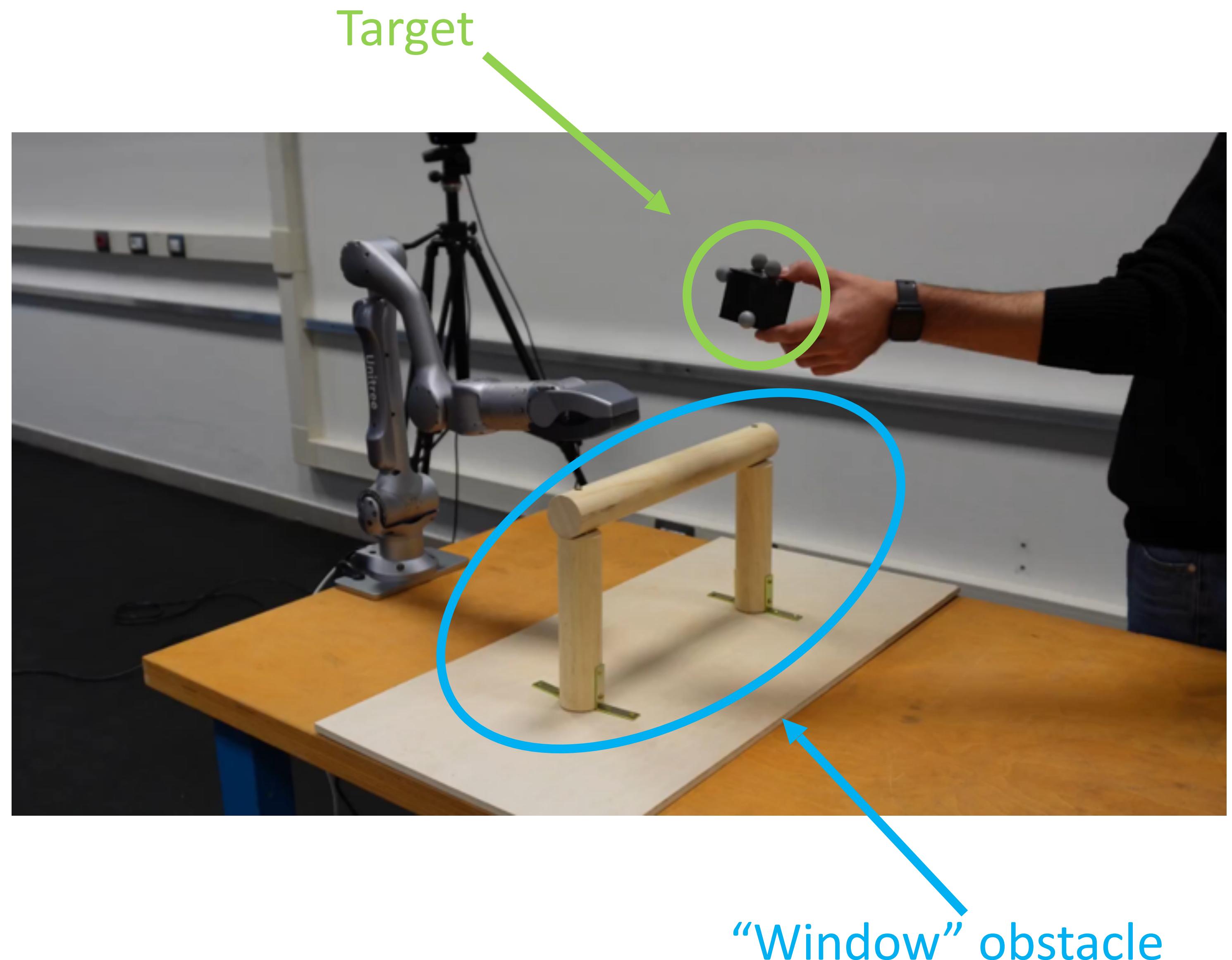
Simulation Results - Receding

- Naive: standard MPC formulation
- Zerovel: terminal constraint imposing zero velocity
- ST: soft terminal constraint $\hat{\mathcal{V}}$
- Terminal: hard terminal constraint $\hat{\mathcal{V}}$
- HTWA: hard terminal constraint $\hat{\mathcal{V}}$ with safe abort strategy

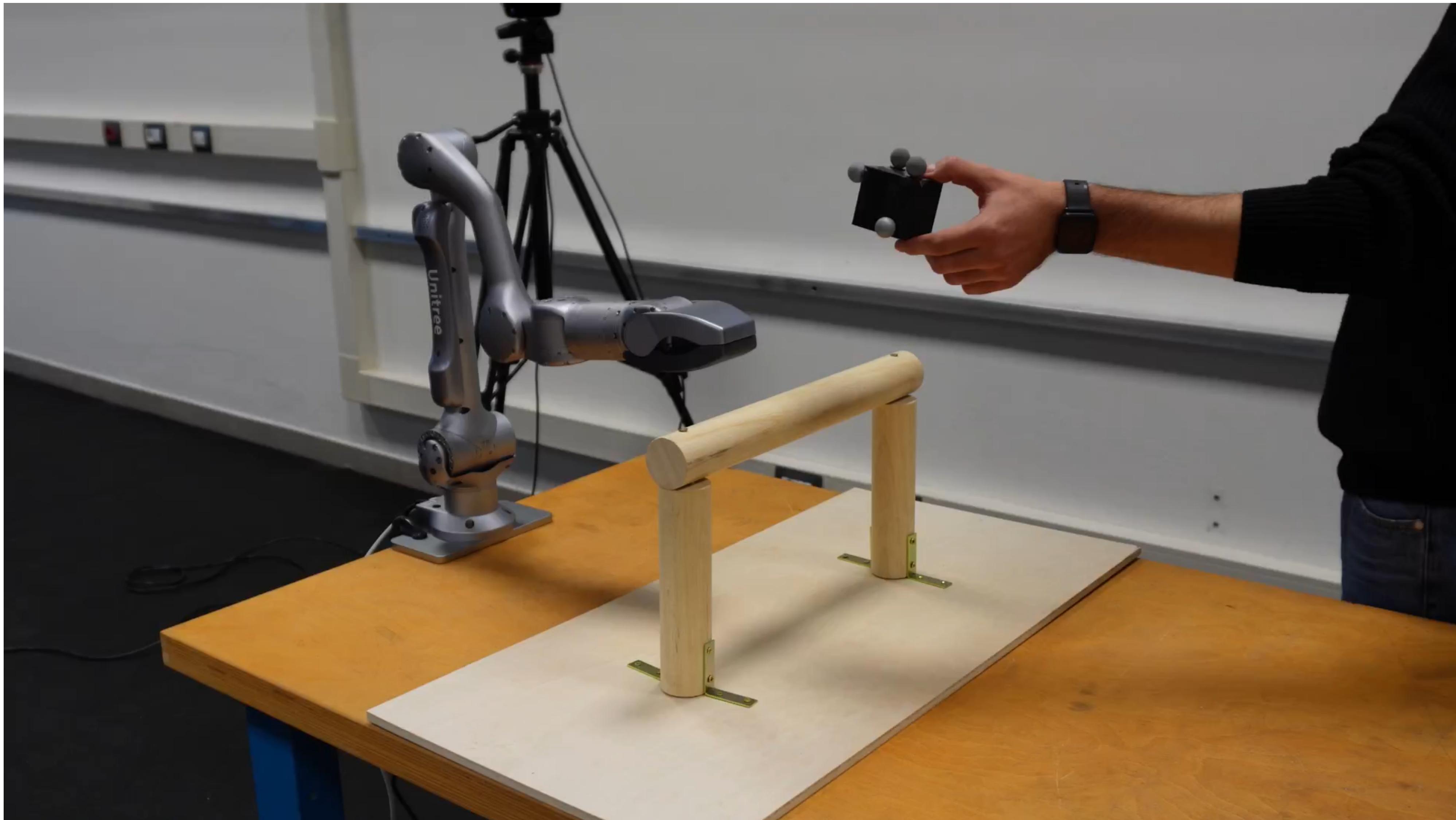


Experimental Setup

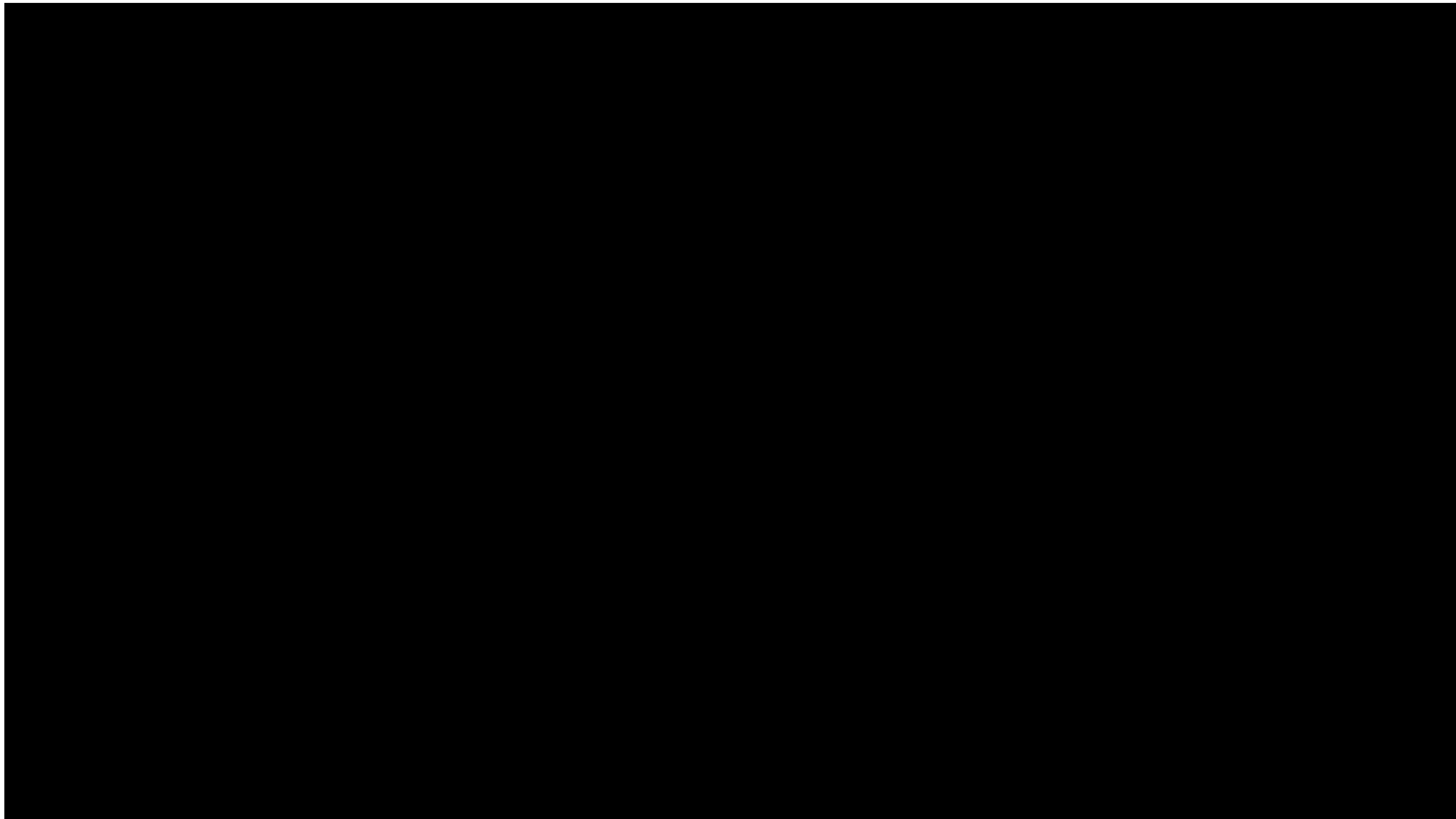
- Receding-Constraint MPC
- 6 degrees of freedom
- Z1 robot manipulator
- Tracking of moving target
- Target perceived with motion capture



Tracking Experiment - Side View



Tracking Experiment - Top View



Safe MPC - Conclusions

- Novel MPC formulations ensuring
 - **Recursive feasibility** under weaker conditions (N-Step CIS)
 - **Safety** under even weaker conditions (inner approx. of CIS)
 - Empirically superior when using **approximate CIS**

On-going/future work

- Computation/**certification** of N-Step CIS
- Handle dynamics **uncertainties/obstacles**
- Application as **safety filter** for RL policies

Take-Home Message

Globally Optimal and Safe Robot Control

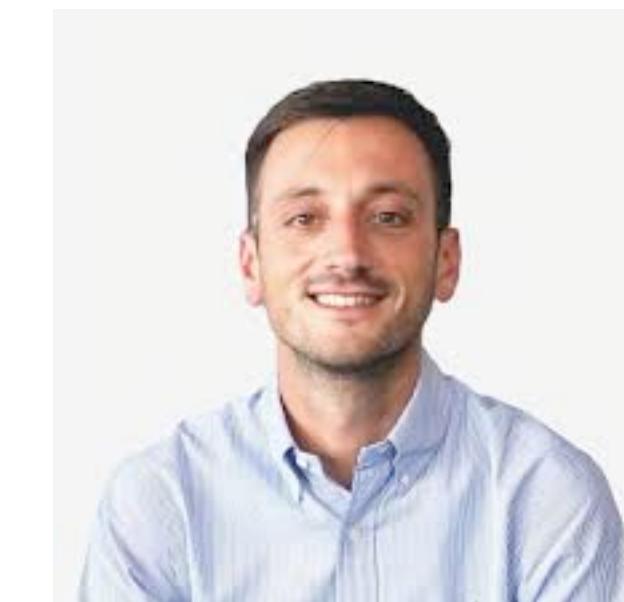
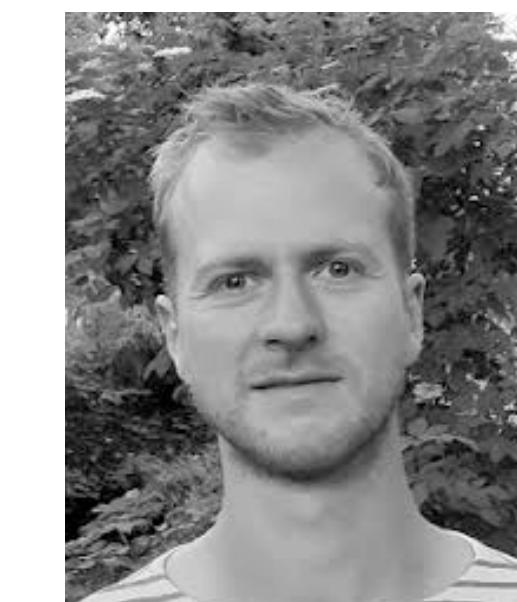
- Using ideas from TO we can make RL efficient and safe
 - Use **dynamics derivatives** to guide RL exploration (CACTO)
 - Use **novel safe sets** to make control (RL) safe

Current challenges

- algorithms to compute $\hat{\mathcal{V}}$ **do not scale** and cannot **certify** set properties (e.g. N-Step Control Invariance)
- dynamics derivatives are ill-defined in **contact-rich** tasks

Safe and Efficient Reinforcement Learning

Combining **learning** and trajectory optimization



UNIVERSITY
OF TRENTO

Andrea Del Prete