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Is there anything Reinforcement Learning can't do?
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The i1Issues with RL
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Can we use ideas from Trajectory Optimization
to make RL safe and efficient?
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CACTO: Continuous Actor-Critic
with Trajectory Optimization
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Reinforcement Learning V¥ Trajectory Optimization
WITH?

N-—1
minimize Z Uiz, u;) +On(TN)

{zi}d fuwity 7 25
subject to  x;11 = f(x;, u;) i=0...N—1
r,11 € X, u; €U 1 =0...N —1

Reinforcement Learning
-4 Less prone to poor local minima

=4 Derivative free (easy to implement)
-4 Fast online policy evaluation

-4+ Typically stochastic

m= Poor data efficiency (slow training)
== Does not account for constraints

Trajectory Optimization
-+ Data efficient (fast)
-+ Exploits dynamics derivatives
-+ Accounts for constraints

mm Can get stuck in poor local minima
m= Online computational burden

== Typically deterministic



Where should TO be introduced?

TO pre-policy TO post-policy TO + residual policy
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In which block should TO be considered?

Actor or environment?

TO as part of the policy TO as part of the
environment

Need to Actor NoO need to
differentiate ——— differentiate
TO! ¥ © TO!

Environment * [I_C_)_I
Actions are ‘ Actions are
the output Critic [ Critic « the output
of TO * of the actor
@ policy



TO post-policy

What should the policy learn?

TO post-policy Running cost Value function
\ (i.e. terminal cost)
; N—1 « el
minimize Li(wi,ui) + AN (TN):
{wz}g)va{uz (])V_l i—o Tttt T '
subject to ;1 :f(:zzz,uz) L= 0...N —1
Tit1 E X u; €U i=0...N—1
\‘ B "k' o )
~olicy RUNNING Dynamics

- (used to warm-start) constraints



CACTO

Trajectory Optimization

(TO)
Warm-start 71
> L.
minimize Y (g, ur) + lr(xT)
r,ucld 15
s.t. Tri1 = f(xg, ur)
X, U
( v )
Cost-to-go computation
(xta V: ajt—l—L)
Y
Sample mini-batch
- Replay buffer

[1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global
Optimality. IEEE Robotics and Automation Letters



Results

Task: find shortest path to target using low control effort and avoiding obstacles

15

10

-10- N
Fal Initial position
/ * Target position AN

—154 | | | | . .
—-15 -10 -5 0 5 10 15
X [m]

Systems: 2D single/double integrator, 6D car model, 3-joint manipulator
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Results: 3-DoF Manipulator

Initial Conditions

warm-start

~20

~10 0 10
X [m]

Cost = 70800

Random
warm-start

20

15¢

10-

~20 ~10 0 10
X [m]

Cost = 88647

CACTO
warm-start

_10

_15

20 T o 0 10
X [m]

Cost =-145875



Comparison: CACTOvs TO

% of times TO finds better solution if warm-started with
CACTO rather than: 15

\.
e Random values
- o : 10-
e |nitial conditions (ICS) for states, zero for other variables
.
§ Hard Region § T
System N . - \Y
CACTO < (<) Random  CACTO < (g) ICS - 0 =
2D Single Integrator 99.1% (99.1%) 92% (99.1%) Nz LY
—~10- N
2D Double Integrator 99.9% (99.9%) 92% (99.1%) | Initial position
S * Target position AN
—15- ' ' | | I ,
Car 100% (100%) 92.9% (100%) S-S s 0 2 1013

2D Double Integrator - CACTO warm-start
Manipulator 87.5% (87.5%) 100% (100%)



Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies
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CACTO - Conclusions

* Novel RL scheme exploiting Trajectory Optimization
* Proof of global convergence in discrete-space setting
* Empirically superior to TO and RL alone
On-going/future work
e Fully-GPU implementation
 Handle uncertainties
* Handle sensor feedback

e Handle state constraints






Safety Definition

What is safety?

i

~» Joint angle, velocity, torque limits Easy

| * Collision avoidance

e Self-collision

T ———— - —— _— — —— — — _ _ -

 Dynamic obstacles (e.g., humans, other robots)

* Collision management:

 Contact shall not result in pain or injury Hard




State of the art



Constrained Dynamical System

Constrained discrete-time dynamical system:

X 1s the state (positions, velocities)

u 1s the control input




Model Predictive Control

Trajectory Optimization inside the control loop

minimize

N —1
— “Mnit

subject to xg = Tinit
:Iji+1:f($7;,u7;) 1 =0...N —1

I —1




Model Predictive Control

Can it ensure safety? No

All trajectories starting
from x5 leave X



Safety Guarantees
State of the art

Control-Invariant Sets Control Barrier Functions Back-up Policies
(CIS) (CBF) (BUP)
/ \ 7
— (\ k\‘ %

Model Predictive Control Quadratic Program Reinforcement Learning



Safety via Control Invariant Sets

7 C X is a control invariant set

VA

Once xisin 7/, it can remainin 7~




Recursive Feasibility
Model Predictive Control (MPC)

Using a CIS 7 as terminal set ensures recursive feasibility in MPC

N-1
minimize Z bi(xi,u;) +€n(TN)
{zi}d Auwite " TG

1 =0...N —1
1 =0...N —1

What if the terminal set is an MPC problem can become
approximation ofaCIS 7" ~ 7" ? p unfeasible using 7 instead of 7!



Beyond Control Invariant Sets

e CIS are unknown for nonlinear systems

 Numerical approximation techniques exist, however:
* They are computationally demanding (curse of dimensionality)
* A numerical approximation of a CIS is not a CIS

 — all safety guarantees are lost!

f Do we really need Contvrantt
“L_: to ensure safety’? %




Beyond Control Invariant Sets

' set within N steps E ) Parallel
. moving back and Constraint MPC
Back & Forth N-step CIS 4 . lorthintime
Within-N-step CIS ir_c_:_c;;ﬁ_e"t;;&:t_c;—{ﬁé" Fixed Receding

i set within N steps

Constraint MPC

N-step CIS
Come back to the

| . E )
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Receding

Constraint MPC
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Constraint MPC




N-Step Control Invariant Set

. 7 is an N-Step CIS Iiff:

e For every X, € 7 it is X
possible to have xy, € 7"

e \Weaker condition than classic i
control invariance From Xx; it is not possible

| to remain in 7/, but it is
* Possible to guarantee safety possible to come back in

with novel MPC schemes 7 in 2 steps!




Beyond Control Invariant Sets

 Hypotheses:
* new sets are easier to compute

* new controllers work better even with approximate CIS
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Beyond Control Invariant Sets
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Loop

Hard Constraint And nOW?
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Prediction
Time Step

Add a soft terminal
constraint

Soft constraint is
satisfied —» we can
shift the hard

constraint forward

/

MPC
Loop

\4

Hard Constraint Soft Constraint



What if the problem gets unfeasible?

Safe Abort Procedure

Assume 7/ C 7 — Even if 7 is not a CIS, any state in 7 is “safe”

- Safe Abort: N—1
* If MPC problem becomes unfeasible ¢, yN r,, 1N 1 ; Li(zi, ui) + £y ()
(2 , (2 ,L:

* Find (and follow) trajectory that: subject to T = Tinit
o (NAN

e starts from last predicted state in V4 i1 = f(x;,u;) 1 =0...N—1

* reaches an equilibrium state x;, € X, u; €U 1 =0...N —1

* Such a trajectory is guaranteed to exist TN = TN_1



Simulation Results

 Comparing several MPC formulations
e 4 DoF Z1 robot manipulator

 Acados software library

. Safe set 7 represented with neural
network

e 500 simulations from random initial
configurations

e Max horizon N=45 to ensure
computation time < dt (5 ms)

» https://qgithub.com/idra-lab/safe-mpc



https://github.com/idra-lab/safe-mpc
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Trajectory Tracking
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Simulation Results - Receding
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Simulation Results - Receding
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Experimental Setup
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* Receding-Constraint MPC \ X Q
» 6 degrees of freedom " — LY »

* /1 robot manipulator —

\ \
» Tracking of moving target ’ W
» Target perceived with motion b -

capture

“Window” obstacle



Tracking Experiment - Side View




Tracking Experiment - Top View




Safe MPC - Conclusions

* Novel MPC formulations ensuring
* Recursive feasibility under weaker conditions (N-Step CIS)
o Safety under even weaker conditions (inner approx. of CIS)
 Empirically superior when using approximate CIS

On-going/future work

 Computation/certification of N-Step CIS

 Handle dynamics uncertainties/obstacles

* Application as safety filter for RL policies



Take-Home Message
Globally Optimal and Safe Robot Control

* Using ideas from TO we can make RL efficient and safe
* Use dynamics derivatives to guide RL exploration (CACTO)

 Use novel safe sets to make control (RL) safe

Current challenges

e algorithms to compute 7" do not scale and cannot certify set
properties (e.g. N-Step Control Invariance)

 dynamics derivatives are ill-defined in contact-rich tasks
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