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Combining  
(Reinforcement) Learning  

and  
Trajectory Optimization

The best of both worlds



Reinforcement Learning VS Trajectory Optimization

Trajectory Optimization
Data efficient (fast)

Exploits dynamics derivatives

Accounts for constraints

Can get stuck in poor local minima  
Online computational burden

Typically deterministic

Reinforcement Learning
Less prone to poor local minima 

Derivative free (easy to implement)

Fast online policy evaluation

Typically stochastic

Poor data efficiency (slow training)

Does not account for constraints

WITH?
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RL and TO - What’s the difference?
Model-free VS model-based?

Derivative Based Derivative Free

Trajectory Trajectory 
Optimization

Model Predictive 
Path Integral Control

Policy Model-based policy 
optimization

Reinforcement 
Learning

What is 
optimized?

How is it optimized?



Model-based Policy 
Optimization



• Optimize policy that gives best average 
performance over horizon T for a set of N 
initial conditions


• Exploit dynamics derivatives


• Efficient policy evaluation at deployment


• Can account for uncertainties via domain 
randomization


• Less efficient than TO due to coupling 
between time steps introduced by 


• Local minima due to optimizing over a 
prediction horizon

θ

Discussion
Model-based Policy Optimization
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High-Level Architectures 
for combining RL and TO

Overview



Combining RL and TO
Vast literature over last decade

• Dynamics: 

• known or unknown?

• deterministic or stochastic?

• Policy: 

• deterministic or stochastic?

• state or sensor-feedback?

• Speed-up RL training

• Speed-up TO computation (for MPC)

• Improve RL policy via local 

refinement or enforcing constraints

• Help TO find global optimum or 

satisfy constraints

• Exploit sensor data

Different assumptions Different objectives

Reiter, Hoffmann, Reinhardt, Messerer, Baumgärtner, Sawant, Boedecker, Diehl, Gros (2025)  
"Synthesis of MPC and RL: Survey and Classification"



Coupled ApprochesSequential Approches

Overview
Architectures Combining RL and TO

RL scheme

TO
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TO Imitation

Value/action

Policy

Coupled TO imitation

TO Imitation
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RL TO
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Discussion
Sequential Approach: TO Imitation

TO Imitation
Value/action

TO imitation • Typically assume deterministic dynamics 
& policy (stochastic policy help dealing 
with multi-modality)


• Value-based imitation makes policy 
aware of consequences of errors


• Objectives: 

• get rid of computational burden of TO

• exploit sensor data

• Limitation: cannot help TO find good 

solutions or satisfy constraints

min
θ

| |πθ(xi) − ai | |2

min
θ

l(xi, πθ(xi)) + Vi+1( f(xi, πθ(xi)))

Action-based imitation

Value-based imitation



TO Imitation

Examples



• Behavior cloning from MPC data


• Learn map from sensors to actions


• No need to address distribution mismatch


• Learning 2 maps (sensors to state + state to actions)  
outperformed direct map from sensors to actions

Khadiv, Meduri, Zhu, Righetti, Schölkopf (L4DC 2023)
Learning Locomotion Skills from MPC in Sensor Space

TO imitation



• Generate trajectories with MPC from random initial states 
and store  in buffer 


• Define Hamiltonian as: 
                


• Sample from buffer and optimize neural policy  as:  
                            


• Address distribution mismatch by collecting extra 
samples around optimal trajectories with behavior policy:  
                 


•  goes from 0 to 1 throughout the algorithm iterations 

(t, x, ∂xV)

H(t, x, u) = l(t, x, u) + ∂xV(t, x)⊤ f(t, x, u)

πθ(t, x)
minθ H(t, x, πθ(t, x))

π(t, x) = (1 − α)πMPC + απθ(t, x)

α

Carius, Farshidian, Hutter (RAL 2020)
MPC-Net: A First Principles Guided Policy Search 

TO imitation



Coupled ApprochesSequential Approches

Overview
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RL scheme

TO

TO inside RL

Imitation-aware 
TO Imitation

Value/action

Policy

Coupled TO imitation

TO Imitation
Value/action

TO imitation

RL TO
Value/policy

RL-supported TO

TD learning TO
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Discussion
Sequential Approach: RL-supported TO

• Typically assumes known deterministic 
dynamics & policy


• Objectives: 

• Speed-up and guide TO through policy-

based warm-start

• Guide TO towards better solutions using 

Value function

• Limitations:

• Does not speed up RL training

• Value computed by TD is as good as TO

Value as terminal cost

RL-supported TO

TORL
Policy to warm start

Value as 
terminal cost

TO

Temporal 
Difference 
Learning

TO



RL-supported TO

Examples



• First use RL (PPO, SAC) to compute 
policy and critic


• Then use RL critic as terminal cost in 
NMPC


• Solve MPC for two initial guesses: 
actor roll-out and shifted previous 
solution


• Use RL actor and critic to choose best 
solution based on approximate infinite 
horizon cost

Reiter, Ghezzi, Baumgartner, Hoffmann, McAllister, Diehl (2024)
AC4MPC: Actor-Critic RL for NMPC

RL-supported TO



Coupled ApprochesSequential Approches
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Discussion
Coupled TO Imitation

• Improvement over vanilla TO imitation 

• Account for policy errors in TO

• Help TO discover actions that are easy to 

learn

• Same objectives and limitations as vanilla 

TO imitation

ActionsPolicy

Coupled TO imitation

Imitation-aware TO

Imitation

min
θ

| |πθ(xi) − ai | |2

min
X,U

J(X, U) + | |U − π(X) | |



Coupled TO Imitation

Examples



• Off-policy policy gradient method 


• Optimize locally optimal trajectories with iLQR 


• iLQR cost includes penalty to stay close to neural 
policy:  


• Penalty is necessary when initial samples cannot be 
reproduced by any policy, e.g. when they act 
differently in similar states


• Build stochastic policy from local iLQR controllers 


• Train neural policy to imitate trajectories 

log πθ(u |x)

Levine, Koltun (ICML 2013) 
Guided Policy Search

Coupled TO imitation



Coupled ApprochesSequential Approches
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Introduction
TO inside RL

• Broad category

• Where should TO be introduced?

• What should be learned?

• Should TO solve the same problem as RL?


• Try to overcome limitations of sequential and 
imitation-based approaches


• Objectives:

• Speed-up RL training

• Speed-up TO online computation

• Guide TO towards high-quality solutions

RL scheme

TO

TO inside RL

Classic RL
EnvironmentActor

Critic



TO + residual policy

Where should TO be introduced?

TO post-policy

Environment

Actor

Critic

TO

TO pre-policy

EnvironmentActor

Critic TO Environment

Actor

Critic

TO

+



Actor or environment?
In which block should TO be considered?

TO as part of the policy

Actor

TO

Environment

Critic

TO as part of the 
environment

Environment

Actor

Critic

TO

Need to 
differentiate 

TO!

No need to 
differentiate 

TO!

Actions are 
the output 

of TO

Actions are 
the output 
of the actor 

policy



What should the policy learn?
TO post-policy

Running cost Value function 
(i.e. terminal cost)

Policy 
(used to warm-start)

TO post-policy

Environment

Actor

Critic

TO

<latexit sha1_base64="puxJuiB8xawEKnv2ywz8TLT42SM="></latexit>
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What should the policy learn?
TO post-policy

Do TO and RL solve the same problem?

NO YES

Running 
cost\constraints

Value function 
(used as terminal cost)

Policy 
(used to warm-start)

Dynamics

TO post-policy

Environment

Actor

Critic

TO



TO + residual policy

Where should TO be introduced?

TO post-policy

Environment

Actor

Critic

TO

TO pre-policy

EnvironmentActor

Critic TO Environment

Actor

Critic

TO

+



Overview
TO post-policy: Learning the cost/constraints

• Sensor-based neural network parametrizes 
cost/constraints, which can be:

• physics-based (e.g. target to reach),

• or not (e.g. general quadratic function)


• TO is either part of the actor or of the 
environment (i.e. differentiated or not)


• RL and TO solve different problems

• Could theoretically parametrize also dynamics, 

but not done in practice

Actor

TO

Environment

Critic

cost
constraints



Discussion
TO post-policy: Learning the cost/constraints

• Objectives: 

• Speed-up RL (and potentially TO)

• Exploit sensor data in TO (neural cost can be 

sensor-based)

• Better handle out of distribution behaviors

• Exploit TO's guarantees in RL (safety, stability)

• Limitations:

• Need to solve TO online to use policy

• Hard to ensure TO is fast, safe and generalizes 

when out of distribution

Actor

TO

Environment

Critic

cost
constraints



TO post-policy: Learning 
the cost /constraints

Examples



• Differentiable MPC with input 
constraints as last layer of actor policy


• Quadratic MPC cost with parametric 
coefficients


• Exploration by sampling u around 
output of MPC with variance 
controlled by PPO


• Validation in simulation and real 
quadcopter platform

Romero, Song, Scaramuzza, ICRA 2024
Actor-Critic Model Predictive Control

TO post-policy: learning the cost



Overview
TO post-policy: Learning the terminal cost

• Neural network parametrizes terminal cost

• Network trained with TD learning to match 

Value function

• No policy representation

• No policy improvement step

• Same problem solved by TO and RL

Actor

TO
Environment

Critic

terminal 
cost



Discussion
TO post-policy: Learning the terminal cost

• Objectives: 

• Speed-up RL training and TO computation

• Help TO find high-quality solutions

• Satisfy constraints (but no recursive feasibility)

• Limitations:

• TO could be slow or find bad solutions even 

with perfect Value function

• Need to solve TO at deployment

• TO does not exploit sensor data

Actor

TO
Environment

Critic

terminal 
cost



TO post-policy: Learning 
the terminal cost

Examples



• TO with learned Value function


• Use an ensemble of Value function 
approximators to capture uncertainty


• Use soft-max (computed as log-sum-exp) 
of Value functions to encourage 
exploration according to “optimism in the 
face of uncertainty”


• Use MPPI for TO


• Exploration strategy designed to avoid TO 
exploiting Value approximation errors

Lowrey, Rajeswaran, Kakade, Todorov, Mordatch (ICLR 2019)
Plan online, learn offline (POLO)

TO post-policy: learning the terminal cost



Overview
TO post-policy: Learning a warm-start policy

• Actor used to warm-start TO

• Optionally, critic used in TO as terminal cost

• Objectives:

• Speed up RL training (and potentially TO)

• Satisfy constraints

• Help TO find high-quality solutions

• Get policy for fast deployment

• Limitations:

• TO/policy do not exploit sensor data

TO post-policy

EnvironmentActor

Critic

TOwarm 
start



TO post-policy: learning 
a warm-start policy

Examples



• Ensemble model learning from 
environment transitions


• i-MPPI warm-started by neural policy 
and using neural Value as terminal cost


• SAC: soft policy evaluation and soft 
policy improvement (maximum entropy) 
over mixture of models and 
environments


• SAC encourages exploration, while 
MPPI encourages exploitation


• Similar to CACTO (next slide), but does 
not exploit model derivatives

Morgan, Nandha, Chalvatzaki, D’Eramo, Dollar, Peters (ICRA 2021)
Model Predictive Actor-Critic (MoPAC)

TO post-policy: learning warm-start policy



• Derivative-based TO optimizes warm-
start computed with policy roll-out


• Value network trained with TD(N)


• Deterministic policy improved 
minimizing Q function


• Dynamics assumed to be known  
and differentiable


• Exploration ensured by uniform 
sampling of initial TO states (no need 
to explore action space)

Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (RAL 2023)
Continuous Actor-Critic with TO (CACTO)

TO post-policy: learning warm-start policy



TO + residual policy

Where should TO be introduced?

TO post-policy

Environment

Actor

Critic

TO

TO pre-policy

EnvironmentActor

Critic TO Environment

Actor

Critic

TO

+



Overview
TO pre-policy

• TO computes some quantities (e.g. reference motion 
to track) that is inputted to the RL policy


• TO could rely on simplified model for speed

• Objectives:

• Speed up RL training

• Satisfy constraints

• Limitations:

• TO must be solved online to use policy

• Rely on TO’s ability to find good solutions

• Policy could violate constraints even if TO does not

TO pre-policy

EnvironmentActor

Critic
TO



Pre-policy TO 

Examples



• High-level MPC plans footholds at  
low rate


• Low-level RL policy follows the 
footholds at high rate


• MPC used during training


• Reward desired foothold positions at 
planned touch-down


• MPC on CPU, RL (PPO) on GPU

Jenelten, He, Farshidian, Hutter (Science Robotics 2024)
DTC: Deep Tracking Control 

TO pre-policy: learning to track reference



TO + residual policy

Where should TO be introduced?

TO post-policy

Environment

Actor

Critic

TO

TO pre-policy

EnvironmentActor

Critic TO Environment

Actor

Critic

TO

+



Discussion
TO + Residual policy

• TO computes nominal control inputs

• RL policy computes additional control inputs to 

improve closed-loop performance

• Objective:

• Speed up RL training

• Limitations:

• TO must be solved online to use policy

• Rely on TO’s ability to find (roughly) good solutions

• Policy could violate constraints even if TO does not

TO + residual policy

EnvironmentActor

Critic

TO

+



TO + Residual policy

Examples



• Assume good but imperfect 
controllers are available


• RL from scratch may be data-
inefficient or intractable


• Initialize residual policy to output zero


• Train critic alone for “burn in” period 
while leaving policy fixed

Silver, Allen, Tenenbaum, Kaelbling (2018)
Residual Policy Learning

TO + residual policy



Summary



Coupled ApprochesSequential Approches

RL scheme

Take-home messages
Architectures Combining RL and TO

RL TO
Value/policy

TO Imitation
Value/action

Imitation-aware 
TO Imitation

Value/action

Policy

TO

TO inside RL

Coupled TO imitationTO imitation

RL-supported TO

TD learning TO
Value

If you are satisfied with TO’s solutions but want to 
speed it up

If you are satisfied with 
RL’s training time but 
want to refine policy

If TO’s solutions are not 
good enough & you 
wanna speed up RL



TO + residual policy

Take-home messages
Where should TO be introduced?

TO post-policy

Environment

Actor

Critic

TO

TO pre-policy

EnvironmentActor

Critic TO Environment

Actor

Critic

TO

+

If TO’s solution 
is already quite 

good & you 
wanna just 

refine it

If you can 
effectively solve 

a part of the 
problem with 

TO (rarely used)

Most common 
and meaninful 

approach



Take-home messages
In which block should TO be considered?

TO as part of the policy

Actor

TO

Environment

Critic

TO as part of the 
environment

Environment

Actor

Critic

TO

Need to 
differentiate 

TO!

No need to 
differentiate 

TO!

Actions are 
the output 

of TO

Actions are 
the output 
of the actor 

policy

Not a big deal 
IMO. I’d choose 

the approach 
that leads to 

smallest action 
space.



Take-home messages
What should the policy learn?

Do TO and RL solve the same problem?

NO YES

Running 
cost/constraints

Value function 
(used as terminal cost)

Policy 
(used to warm-start)

Terminal 
cost/constraints

TO post-policy

Environment

Actor

Critic

TO

Best strategy if 
it can be used. 
Hard to achieve 
sensor feedback

Easy to achieve 
sensor feedback. 
Need to solve TO 
at deployment.



Take-home messages
Learning the terminal cost VS warm-start

Terminal cost

Actor

TO
Environment

Critic

terminal 
cost

Warm-start

EnvironmentActor

Critic

TOwarm 
startWith perfect 

warm-start TO is 
fast and optimal

With perfect 
terminal cost TO 

could still be slow 
or suboptimal

One can 
learn both!



• Benefits: 

• Speed up RL and TO


• Guide TO towards global optimality


• Exploit sensor feedback


• Key ideas: 

• Use dynamics derivatives to guide RL


• Use Value function as terminal cost to 
shorten TO’s horizon


• Use policy to warm-start & guide TO

Combining RL and TO
Conclusions

Current challenges: 

• Getting the right architecture is 
fundamental


• Dynamics derivatives are ill-defined in 
contact-rich tasks


• TO struggles with stochasticity


• Solving TO on GPU is still hard



CACTO: Continuous Actor-Critic 
with Trajectory Optimization

Gianluigi Grandesso*, 
Elisa Alboni*,  

Gastone Rosati Papini*, 
Patrick Wensing**, 

Justin Carpentier***, 
Andrea Del Prete* 

[1] (2023) CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global Optimality. IEEE RA-L

[2] (2024) CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with Trajectory Optimization. In L4DC

* ** ***



University of Trento – DII 05/2024

Deep Deterministic Policy Gradient (DDPG)

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D. (2015). Continuous 
control with deep reinforcement learning. In Foundations and Trends in Machine Learning



University of Trento – DII

CACTO

[1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global 
Optimality. IEEE Robotics and Automation Letters



Task: find shortest path to target using low control effort and avoiding obstacles

Results

Systems: 2D single/double integrator, 6D car model, 3-joint manipulator  



Results: 3-DoF Manipulator
Initial Conditions

warm-start
Random

warm-start

Cost = 70800

CACTO 
warm-start

Cost = 88647 Cost = -145875



University of Trento – DII

System
Hard Region

CACTO < (≤) Random CACTO < (≤) ICS

2D Single Integrator 99.1% (99.1%) 92% (99.1%)

2D Double Integrator 99.9% (99.9%) 92% (99.1%)

Car 100% (100%) 92.9% (100%)

Manipulator 87.5% (87.5%) 100% (100%)

% of times TO finds better solution if warm-started with 
CACTO rather than: 
● Random values

● Initial conditions (ICS) for states, zero for other variables

28/03/202305/2024

2D Double Integrator - CACTO warm-start

Comparison: CACTO vs TO



University of Trento – DII

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies

28/03/202305/2024

Comparison: CACTO, DDPG, PPO



1D Example
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minimize
X,U

T�1X

k=0

⇥
c(xk) + wu||uk||2

⇤
+ c(xT )

subject to xk+1 = xk +�t uk 8 k = 0, . . . , T � 1

x0 = xinit

Local minima



With naive initial guess
Trajectory Optimization

Basins of attraction of the 3 local minima



With naive initial guess
Trajectory Optimization

Basins of attraction of the 3 local minima



First Iteration



The Value function is discontinuous so the network approximates it.
Learning the critic

Discontinuities



At the first iteration we pre-train the actor to imitate the control inputs of TO.
Supervised Learning of the actor



We improve the actor by minimizing the Q function
Learning the actor minimizing Q

Improvements



TO improves thanks to the initial guess of the actor
Using the actor to warm-start TO

Improvements



University of Trento – DII

● TO guides the RL exploration making it sample efficient

● RL policy guides TO towards globally optimal solutions

● Global convergence proof for discrete-space version of CACTO


Recent extensions 
● Improve data efficiency leveraging derivative of Value function [2]

● Bias initial episode state to improve data efficiency (unpublished)

● Parallelize on GPUs (unpublished)


Future work 
●Handle non-differentiable dynamics

14/12/202228/03/2023

CACTO - Conclusions

[2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with 
Trajectory Optimization. In Learning for Dynamics and Control Conference (L4DC)


