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Reinforcement Learning
-4 Less prone to poor local minima

=4 Derivative free (easy to implement)
-4 Fast online policy evaluation

-4+ Typically stochastic

m= Poor data efficiency (slow training)
== Does not account for constraints

Trajectory Optimization
-+ Data efficient (fast)
-+ Exploits dynamics derivatives
-+ Accounts for constraints

mm Can get stuck in poor local minima
m= Online computational burden

== Typically deterministic



RL and TO - What’s the difference?

Model-free VS model-based?

How is it optimized?

What is
optimized?

Derivative Based

Derivative Free

Trajectory

Trajectory
Optimization
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Model-based Policy Optimization

Discussion

* Optimize policy that gives best average
performance over horizon T for a set of N

min — Z J(X, UY initial conditions
¢
i / m  Exploit dynamics derivatives

S.1. ui = 7T,(X
‘9( ! o Efficient policy evaluation at deployment

l — l
Xvi = f (xw ut)  Can account for uncertainties via domain
. randomization
Vie|lON-1],t€ |0,T - 1]
» Less efficient than TO due to coupling
between time steps introduced by &

Number of trajectories . C.
Horizon length e Local minima due to optimizing over a

prediction horizon



High-Level Architectures
for combining RL and TO

Overview



Combining RL and TO

Vast literature over last decade

Different assumptions Different objectives
e Dynamics: » Speed-up RL training
e known or unknown? » Speed-up TO computation (for MPC)
» deterministic or stochastic? * Improve RL policy via local
. Policy: refinement or enforcing constraints
* deterministic or stochastic? ' Hellp 10 find g!obal optimum or
satisfy constraints
e state or sensor-feedback? .

Exploit sensor data

Reiter, Hoffmann, Reinhardt, Messerer, Baumgartner, Sawant, Boedecker, Diehl, Gros (2025)
"Synthesis of MPC and RL: Survey and Classification”



Architectures Combining RL and TO

Overview

Sequential Approches Coupled Approches

Value/action
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Sequential Approach: TO Imitation

Discussion
.................. T S imitation T e, © - 1YPICEIlY @SSUME deterministic dynamics

ol Value/action Imitation] = with multi-modality)
.« \/alue-based imitation makes policy

""" Action-based imitation - aware of consequences of errors

- mun | [my(x) — a; & * Objectives:

. ‘9 ......................................................... ° ge't nd Of COmputationa| burden Of TO
el Value-based imitation i i * exploit sensor data
min 10, 5()) + Vi1 (JX 7400))) -+ Limitation: cannot help TO find good

et - S0OlUTIONS OF Satisfy constraints



TO Imitation

Examples



Learning Locomotion Skills from MPC in Sensor Space
Khadiv, Meduri, Zhu, Righetti, Schélkopf (L4DC 2023)

End-to-end Network

Phase variable ’\

Encoder Estimator q Pollcy Actions

measurements Network States > Network
IMU

measurements /

» Behavior cloning from MPC data -

o Learn map fr()m SenSOrS 'tO aCtIOnS ..............................................................
* No need to address distribution mismatch

» Learning 2 maps (sensors to state + state to actions)
outperformed direct map from sensors to actions



MPC-Net: A First Principles Guided Policy Search

» Generate trajectories with MPC from random initial states
and store (7, x, 0,V') in buffer

* Define Hamiltonian as:
H(t,x,u) = I(t,x, u) + 3, V(t,x) f(t, x, u)

- Sample from buffer and optimize neural policy my(t, x) as: o
MPC: Data Generation oncy searc
ml ﬂg H ( t o X o ﬂ@(t o X)) Draw random starting point & (. Sample random batch

Compute loss |

pc

2 i 11 | Gradient update step Jgl
= Compute auxiliary terms v, 0,V

EC‘ompute optimal control w,,,,,
~

* Address distribution mismatch by collecting extra
samples around optimal trajectories with behavior policy:

Integrate state over time step At \

n(t,x) = (1 — )mype + amyt, x) — oy
\d/j//

» o goes from 0 to 1 throughout the algorithm iterations



Architectures Combining RL and TO

Overview

Sequential Approches Coupled Approches

Value/action
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Sequential Approach: RL-supported TO

Discussion

Value as terminal cost
|l ol

Policy to warm start

Temporal Value as

Diﬁerepce terminal cost
Learning TO

* [ypically assumes known deterministic
dynamics & policy

* Objectives:

o Speed-up and guide TO through policy-
based warm-start

* (Guide TO towards better solutions using
Value function

 Limitations:
* Does not speed up RL training

* Value computed by TD is as good as TO



RL-supported TO

Examples



ACAMPC: Actor-Critic RL for NMPC

Reiter, Ghezzi, Baumgartner, Hoffmann, McAllister, Diehl (2024)

RL-supported TO
* First use RL (PPO, SAC) to compute : .
policy and critic | policy Roll-ou 2 >
é qA)(SJ')a ‘i’(sj) 1""11)
» Then use RL critic as terminal costin =~ |, 155 v | ,
NMPC E S »0O A _: R » Evaluator > shift —)E
: false D ~D and D p:
L 5 Sj»Wj | Selector iy
* Solve MPC for two initial guesses: g mod (4, P) - 0 y
actor roll-out and shifted previous § )
SOIUtIOn : S 1,1 N MPC-active 3 | chift _)é
« Use RL actor and critic to choose best A R
solution based on approximate infinite
SRR (SHSHSRSRRSPRSSSEN SRRSO

horizon cost " iteration



Architectures Combining RL and TO

Overview

Sequential Approches Coupled Approches

Value/action
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Coupled TO Imitation

Discussion
I oo v W
imitation-aware TO -« Improvement over vanilla TO imitation
min JX, U) + | | U — z(X)|| .« Account for policy errors in TO
. Help TO discover actions that are easy to
Policy Actions| learn
Imitation .« Same objectives and limitations as vanilla
. 2 i " . "
m;n | |7z-9(xl.) — ai‘ | TO imitation



Coupled TO Imitation

Examples



Guided Policy Search

» Off-policy policy gradient method
* Optimize locally optimal trajectories with iLQR

* iLQR cost includes penalty to stay close to neural
policy: log my(u | x)

* Penalty Is necessary when initial samples cannot be

reproduced by any policy, e.g. when they act
differently in similar states

» Build stochastic policy from local iLQR controllers

* Train neural policy to imitate trajectories



Architectures Combining RL and TO

Overview
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T°'"S'deRL """ TO inside RL

Introduction

* Broad category
e \Where should TO be introduced?
Classic RL  \What should be learned?

* Should TO solve the same problem as RL?

* [ry to overcome limitations of sequential and
Imitation-based approaches

* Objectives:

Critic

5 [—

» Speed-up RL training
o Speed-up TO online computation

— * Guide TO towards high-quality solutions



Where should TO be introduced?

TO pre-policy TO post-policy TO + residual policy

* 70
Actor Environment Actor Actor
& O 25 70 &

CriiiC |@ = = = = :TO

et




In which block should TO be considered?

Actor or environment?

TO as part of the policy TO as part of the
environment

Need to Actor NoO need to
differentiate ——— differentiate
TO! ¥ © TO!

Environment * [I_C_)_I
Actions are ‘ Actions are
the output Critic [ Critic « the output
of TO * of the actor
@ policy



TO post-policy

What should the policy learn?

TO post-policy Running cost Value function
\ (i.e. terminal cost)
; N—1 « el
minimize Li(wi,ui) + AN (TN):
{wz}g)va{uz (])V_l i—o Tttt T '
subject to ;1 :f(:zzz,uz) L= 0...N —1
Tit1 E X u; €U i=0...N—1
\‘ B "k' o )
~olicy RUNNING Dynamics

- (used to warm-start) constraints



TO post-policy

What should the policy learn?

TO post-policy Do TO and RL solve the same problem?

Actor
NO YES
Running Policy
cost\constraints (used to warm-start)

Value function

Dynamics (used as terminal cost)




Where should TO be introduced?

TO pre-policy TO post-policy TO + residual policy

* 70
Actor Environment Actor Actor
& O 25 70 &

CriiiC |@ = = = = :TO

et




TO post-policy: Learning the cost/constraints

Overview

e Sensor-based neural network parametrizes
cost/constraints, which can be:

Actor

* physics-based (e.g. target to reach),

* or not (e.g. general quadratic function)

 TO is either part of the actor or of the
environment (i.e. differentiated or not)

COS’[. | TOI
constraints |

Environment

Critic

et

 RL and TO solve different problems

* Could theoretically parametrize also dynamics,
but not done In practice



TO post-policy: Learning the cost/constraints

Discussion

* Objectives:
o Speed-up RL (and potentially TO)

Actor * Exploit sensor data in TO (neural cost can be

cost sensor-based)
@ constraints @

e Better handle out of distribution behaviors

* Exploit TO's guarantees in RL (safety, stability)

Critic

et

e Limitations:

* Need to solve TO online to use policy

 Hard to ensure TO is fast, safe and generalizes
when out of distribution



TO post-policy: Learning
the cost /constraints

Examples



Actor-Critic Model Predictive Control

Romero, Song, Scaramuzza, ICRA 2024

TO post-policy: learning the cost

Differentiable MPC with input
constraints as last layer of actor policy

Quadratic MPC cost with parametric
coefficients

Exploration by sampling u around
output of MPC with variance

controlled by PPO

Validation in simulation and real
quadcopter platform

‘Environment
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TO post-policy: Learning the terminal cost

Overview

Actor  Neural network parametrizes terminal cost

terminal
Environment

* Network trained with TD learning to match
Value function

@ cost

* No policy representation

Crific * No policy improvement step

=t

e Same problem solved by TO and RL




TO post-policy: Learning the terminal cost

Discussion

* Objectives:

o Speed-up RL training and TO computation

Actor

* Help TO find high-quality solutions

terminal

@ cost

o Satisfy constraints (but no recursive feasibility)
* Limitations:

e TO could be slow or find bad solutions even
with perfect Value function

Environment

S— * TO does not exploit sensor data

Critic

=t

* Need to solve TO at deployment



TO post-policy: Learning
the terminal cost

Examples



Plan online, learn offline (POLO)
Lowrey, Rajeswaran Kakade, Todorov, Mordatch (ICLR 2019)

e TO with learned Value function

 Use an ensemble of Value function
approximators to capture uncertainty

* Use soft-max (computed as log-sum-exp)
of Value functions to encourage
exploration according to “optimism in the
face of uncertainty”

e Use MPPI for TO

* Exploration strategy designed to avoid TO
exploiting Value approximation errors




TO post-policy: Learning a warm-start policy

Overview

e Actor used to warm-start TO

TO post-policy

* Optionally, critic used in TO as terminal cost

* Objectives:

 Speed up RL training (and potentially TO)
o Satisfy constraints

* Help TO find high-quality solutions

* Get policy for fast deployment

e Limitations:

* TO/policy do not exploit sensor data



TO post-policy: learning
a warm-start policy

Examples



Model Predictive Actor-Critic (MoPAC)

Morgan, Nandha, Chalvatzaki, D’Eramo, Dollar, Peters (ICRA 2021)

 Ensemble model learning from
environment transitions

* I-MPPI warm-started by neural policy
and using neural Value as terminal cost

 SAC: soft policy evaluation and soft
policy improvement (maximum entropy)
over mixture of models and
environments

» SAC encourages exploration, while
MPPI encourages exploitation

e Similar to CACTO (next slide), but does
not exploit model derivatives



Continuous Actor-Critic with TO (CACTO)

Grandesso, Alboni Rosati Papini Wensing, Del Prete (RAL 2023)

Derivative-based TO optimizes warm-

| | (TO)
Warm-start T_1
Value network trained with TD(N) " minimize Y I(zs, i) + (1)
x,U —0
S.t. Tpy41 = (fﬂkauk)

Deterministic policy improved
minimizing Q function

[ %0

[ Cost-to-go computation }

Dynamics assumed to be known
and differentiable

(mta V7 mH—L)

\ 4

Sample mini-batch

_ 2
min (V — ng(a;)) < Replay buffer

Exploration ensured by uniform
sampling of initial TO states (no need
to explore action space)



Where should TO be introduced?

TO pre-policy TO post-policy TO + residual policy

* 70
Actor Environment Actor Actor
& O 25 70 &

CriiiC |@ = = = = :TO

et




TO pre-policy
Overview

 TO computes some quantities (e.g. reference motion
TO pre-policy to track) that is inputted to the RL policy

* TO could rely on simplified model for speed

Environment

* Objectives:
O » Speed up RL training
J o Satisfy constraints
T * Limitations:
o)

 TO must be solved online to use policy

* Rely on TO’s ability to find good solutions

* Policy could violate constraints even if TO does not



Pre-policy TO

Examples



DTC: Deep Tracking Control

Jenelten He, Farshidian, Hutter (Science Robotics 2024)

* High-level MPC plans footholds at
low rate

* Low-level RL policy follows the
footholds at high rate

 MPC used during training

 Reward desired foothold positions at
planned touch-down

« MPC on CPU, RL (PPO) on GPU N\

Y~¥



Where should TO be introduced?

TO pre-policy TO post-policy TO + residual policy

* 70
Actor Environment Actor Actor
& O 25 70 &

CriiiC |@ = = = = :TO

et




TO + Residual policy

Discussion

 TO computes nominal control inputs

TO + residual policy

* RL policy computes additional control inputs to
improve closed-loop performance

* Objective:
» Speed up RL training
* Limitations:
 TO must be solved online to use policy

* Rely on TO'’s ability to find (roughly) good solutions

— * Policy could violate constraints even if TO does not



TO + Residual policy

Examples



Residual Policy Learning
Silver, Allen, Tenenbaum, Kaelbling (2018)

 Assume good but imperfect
controllers are available

 RL from scratch may be data-
iInefficient or intractable

» |nitialize residual policy to output zero <

* Train critic alone for “burn in” period
while leaving policy fixed






Architectures Combining RL and TO

Take-home messages

Sequential Approches Coupled Approches




Where should TO be introduced?

TO pre-policy

Take-home messages

TO post-policy

[

TO + residual policy




In which block should TO be considered?

Take-home messages

TO as part of the

TO as part of the policy
e mavironment

Needto | Actor u No need to
differentiate L Ervironment] | differentiate
TO! § @I TO!

. Actions are
Actions are the output
the output orite of the actor

of TO @ .

policy



What should the policy learn?

Take-home messages

TO post-policy

Do TO and RL solve the same problem?

NO YES




Learning the terminal cost VS warm-start

Take-home messages

Terminal cost Warm-start

| Actor Environment
s ] D A




Conclusions
Combining RL and TO

e Benefits: Current challenges:
e Speed up RL and TO o Getting the right architecture is
fundamental

» Guide TO towards global optimality

 Dynamics derivatives are ill-defined In

* Exploit sensor feedback contact-rich tasks

» Key ideas: * TO struggles with stochasticity

e Use dynamics derivatives to guide RL » Solving TO on GPU is still hard

e Use Value function as terminal cost to
shorten TO’s horizon

» Use policy to warm-start & guide TO
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Deep Deterministic Policy Gradient (DDPG)

4 _ N

Agent . Noise process

: ot . for exploration

Actor Lgx Target actor pp,

’at = u/.t,t —+ M

N /
(ilft, ﬂ't)
\

(" N

Reward acquisition
- J

(wta ﬂ'ta T't, CBt—!—l)

v

Sample mini-batch

99 769 4 (1 — 7)94 Replay buffer

Lillicrap, 1. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, 1., Tassa, Y., ... Wierstra, D. (2015). Continuous
control with deep reinforcement learning. In Foundations and Trends in Machine Learning




CACTO

Trajectory Optimization

(TO)
Warm-start 71
> L.
minimize Y (g, ur) + lr(xT)
r,ucld 15
s.t. Tri1 = f(xg, ur)
X, U
( v )
Cost-to-go computation
(xta V: ajt—l—L)
Y
Sample mini-batch
- Replay buffer

[1] Grandesso, Alboni, Rosati Papini, Wensing, Del Prete (2023). CACTO: Continuous Actor-Critic With Trajectory Optimization - Towards Global
Optimality. IEEE Robotics and Automation Letters



Results

Task: find shortest path to target using low control effort and avoiding obstacles

15

10

-10- N
Fal Initial position
/ * Target position AN

—154 | | | | . .
—-15 -10 -5 0 5 10 15
X [m]

Systems: 2D single/double integrator, 6D car model, 3-joint manipulator



20

15¢

10-

_10

_15

~20

Results: 3-DoF Manipulator

Initial Conditions

warm-start

~20

~10 0 10
X [m]

Cost = 70800

Random
warm-start

20

15¢

10-

~20 ~10 0 10
X [m]

Cost = 88647

CACTO
warm-start

_10

_15

20 T o 0 10
X [m]

Cost =-145875



Comparison: CACTOvs TO

% of times TO finds better solution if warm-started with
CACTO rather than: 15

\.
e Random values
- o : 10-
e |nitial conditions (ICS) for states, zero for other variables
.
§ Hard Region § T
System N . - \Y
CACTO < (<) Random  CACTO < (g) ICS - 0 =
2D Single Integrator 99.1% (99.1%) 92% (99.1%) Nz LY
—~10- N
2D Double Integrator 99.9% (99.9%) 92% (99.1%) | Initial position
S * Target position AN
—15- ' ' | | I ,
Car 100% (100%) 92.9% (100%) S-S s 0 2 1013

2D Double Integrator - CACTO warm-start
Manipulator 87.5% (87.5%) 100% (100%)



Comparison: CACTO, DDPG, PPO

Mean cost + std. dev. (across 5 runs) found by TO warm-started with different policies

80000 - —— CACTO warm-starting
DDPG-c warm-starting
60000 - —— DDPG-sb warm-starting
—— PPO warm-starting
40000 -
- 20000-
V)
O
O 0 -
—20000 1
—40000' N = ~— \//\R__/\
—60000 1
0 1 2 3 4 5 6

Training Time [h]



1D Example

T—1
mir)lg’rlr}ize l;) c(x) + wy||ug] 7] + e(zr)

subjectto xpi1 =xp +Atur Vk=0,...,7T —1

L0 = Linit

6 m—— (COSt C(X)

~1 0 1 2
State x



Trajectory Optimization

With naive initial guess

m—— COSt c(X
Control u(x,t=0)

—2 -1 0 1
State X




_10_

_20_

_30_

_40_

_50_

_60_

Trajectory Optimization

With naive initial guess

?‘(jf% ¢ M?\
PR

m— (COSt C(X)
> Control u(x,t=0)
/ < Value V(x,t=0)

~1 0 1 2
State X




First Iteration



Learning the critic

The Value function is discontinuous so the network approximates it.

10-
0_
-10
-20
:" .':. < X
_30 3 0 xxx
‘x".."’: & X xx
_40- Fussssssssssssssssssesssnnnannnnnnns i %X xXx
: Discontinuities: — Critic
_501 & A e ) Value TO
Running cost

_60

State x

2




Supervised Learning of the actor

At the first iteration we pre-train the actor to imitate the control inputs of TO.

8 x uT0
running cost
0 — Actor

State x



Learning the actor minimizing Q

We improve the actor by minimizing the Q function

— Actor
Actor pre-training

State x



Using the actor to warm-start TO

TO improves thanks to the initial guess of the actor

0-
_10-
_20_

_30 _

N/

—50+ Vs

Value V(x,t=0), iter O
Value V(x,t=0), iter 1

_60_

—2 -1 0 1 2
State X



CACTO - Conclusions

e TO guides the RL exploration making it sample efficient
e RL policy guides TO towards globally optimal solutions

e Global convergence proof for discrete-space version of CACTO

Recent extensions
e Improve data efficiency leveraging derivative of Value function [2]
e Bias initial episode state to improve data efficiency (unpublished)

e Parallelize on GPUs (unpublished)

Future work

e Handle non-differentiable dynamics

[2] Alboni, Grandesso, Rosati Papini, Carpentier, Del Prete (2024). CACTO-SL: Using Sobolev Learning to improve Continuous Actor-Critic with
Trajectory Optimization. In Learning for Dynamics and Control Conference (L4DC)



