Task-Space Inverse Dynamics:
Implementation (Joint Space)

Optimization-based Robot Control

Andrea Del Prete

University of Trento



Table of contents

1. Introduction
2. Details

3. Exercises



Introduction



Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

Thttps://github.com /stack-of-tasks/tsid



Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID?.

Thttps://github.com /stack-of-tasks/tsid



Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID?.
TSID (currently) relies on:
e Eigen for linear algebra

e Pinocchio for multi-body dynamics computations

e Eiquadprog for solving Quadratic Programs

Thttps://github.com /stack-of-tasks/tsid
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Main features: Pros & Cons

CONS PROS
o Not mature (Feb 2017) o Efficient (<0.6 ms for
e Many missing features humanoid)
o Hierarchy o Tested in simulation & on
e Joint pos limits HRP-2

Bilateral contacts

. o Open source
e Line contacts )
e Modular design

e — easy to extend
e Python bindings
o No alternative (AFAIK)
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Key Concepts

Task Inverse Dynamics Formulation
e JointPosture e collects Tasks and ...
o JointVelLimits e translates them into LSP
o JointTorqueLimits
HQP Solver
Robot Wrapper e solves HQP (LSP)

e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians
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Robot Wrapper

Interface for computing robot-related quantities:

RobotWrapper (string filename, vector<string> package_dirs,

JointModelVariant rootJoint);

int nq(); // size of configuration vector q

int nv(); // size of velocity vector v
Model & model(); // reference to robot model (Pinocchio)

// Compute all quantities and store them into data
void computeAllTerms(Data &data, Vector q, Vector v);

Matrix mass(Data data);
Vector nonLinearEffects(Data data);
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InverseDynamicsFormulationBase

Central class of the whole library
Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HgpData computeProblemData(double time, Vector q, Vector v);

HgpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel
#typedef vector<ConstraintLevel> HgpData
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HQP Solvers

Using InverseDynamicsFormulationBase you get an HgpData object.
Then you need to solve this HQP.
All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nlIn);

HgpOutput solve(HgpData data);

HgpOutput is defined as:

class HqpOutput

{
QpStatusFlag flag;
Vector x, lambda;
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Available HQP Solvers

Several solvers currently implemented
None of them supports hierarchy
— HQP problems can only have two hierarchy levels.
All solvers based on EiQuadProg: a modified version of
uQuadProg++ working with Eigen
To improve efficiency, two optimized versions have been developed:
e EiquadprogRealTime: the fastest, but matrix sizes known at
compile time
e EiquadprogFast: dynamic matrix sizes (memory allocation
performed only when resizing)

Results on HRP-2's computer (very old):

60 variables, 18 equalities, 40 inequalities

**%* PROFILING RESULTS [ms] (min - avg - max ) ***
IRIEIEGETEIEEE 0000000000000000000 0.651 0.704 0.870
Eiquadprog Fast .............. 0.563 0.605 0.810
Eiquadprog Real Time ......... 0.543 0.592 0.712

active inequalities .... 16.0 19.8 26.0 8
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Exercize 0

Open Virtual Machine.
Open Terminal and execute:
cd devel/src/tsid

git pull
spyder&

Open file
/home/student/devel/src/tsid/exercizes/ex_0_ur5_joint_space_control.py

Press F5 to run file.
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