Task-Space Inverse Dynamics:
Implementation (Joint Space)

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Table of contents

1. Introduction
2. Details

3. Exercises

Introduction

Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

Thttps://github.com /stack-of-tasks/tsid

Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID?.

Thttps://github.com /stack-of-tasks/tsid

Introduction

This document explains the implementation of the control framework
Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID?.
TSID (currently) relies on:
e Eigen for linear algebra

e Pinocchio for multi-body dynamics computations

e Eiquadprog for solving Quadratic Programs

Thttps://github.com /stack-of-tasks/tsid

Main features: Pros & Cons

CONS
o Not mature (Feb 2017)

e Many missing features

e Hierarchy
e Joint pos limits
Bilateral contacts

e Line contacts

Main features: Pros & Cons

CONS PROS
o Not mature (Feb 2017) o Efficient (<0.6 ms for
e Many missing features humanoid)
o Hierarchy o Tested in simulation & on
e Joint pos limits HRP-2

Bilateral contacts

. o Open source
e Line contacts)
e Modular design

e — easy to extend
e Python bindings
o No alternative (AFAIK)

Key Concepts

Task

e JointPosture
o JointVelLimits

e JointTorquelLimits

Key Concepts

Task

e JointPosture
o JointVelLimits

e JointTorquelLimits

Robot Wrapper

e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians

Key Concepts

Task Inverse Dynamics Formulation
e JointPosture e collects Tasks and ...
o JointVelLimits o translates them into LSP

o JointTorqueLimits

Robot Wrapper

e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians

Key Concepts

Task Inverse Dynamics Formulation
e JointPosture e collects Tasks and ...
o JointVelLimits e translates them into LSP
o JointTorqueLimits
HQP Solver
Robot Wrapper e solves HQP (LSP)

e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians

Details

Robot Wrapper

Interface for computing robot-related quantities:

RobotWrapper (string filename, vector<string> package_dirs,

JointModelVariant rootJoint);

int nq(); // size of configuration vector q

int nv(); // size of velocity vector v
Model & model(); // reference to robot model (Pinocchio)

// Compute all quantities and store them into data
void computeAllTerms(Data &data, Vector q, Vector v);

Matrix mass(Data data);
Vector nonLinearEffects(Data data);

InverseDynamicsFormulationBase

Central class of the whole library

Inverse amicsFormulationBase

Central class of the whole library
Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Inverse amicsFormulationBase

Central class of the whole library
Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HgpData computeProblemData(double time, Vector q, Vector v);

InverseDynamicsFormulationBase

Central class of the whole library
Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HgpData computeProblemData(double time, Vector q, Vector v);

HgpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel
#typedef vector<ConstraintLevel> HgpData

HQP Solvers

Using InverseDynamicsFormulationBase you get an HgpData object.

HQP Solvers

Using InverseDynamicsFormulationBase you get an HgpData object.

Then you need to solve this HQP.

HQP Solvers

Using InverseDynamicsFormulationBase you get an HgpData object.
Then you need to solve this HQP.
All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nlIn);

HgpOutput solve(HgpData data);

HQP Solvers

Using InverseDynamicsFormulationBase you get an HgpData object.
Then you need to solve this HQP.
All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nlIn);

HgpOutput solve(HgpData data);

HgpOutput is defined as:

class HqpOutput

{
QpStatusFlag flag;
Vector x, lambda;

Available HQP Solvers

e Several solvers currently implemented

Available HQP Solvers

e Several solvers currently implemented
e None of them supports hierarchy

Available HQP Solvers

e Several solvers currently implemented
e None of them supports hierarchy
e — HQP problems can only have two hierarchy levels.

Available HQP Solvers

e Several solvers currently implemented

None of them supports hierarchy

— HQP problems can only have two hierarchy levels.
All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

Available HQP Solvers

e Several solvers currently implemented

None of them supports hierarchy

— HQP problems can only have two hierarchy levels.

All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen
e To improve efficiency, two optimized versions have been developed:

Available HQP Solvers

e Several solvers currently implemented

None of them supports hierarchy

— HQP problems can only have two hierarchy levels.

All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

e To improve efficiency, two optimized versions have been developed:

e EiquadprogRealTime: the fastest, but matrix sizes known at
compile time

Available HQP Solvers

e Several solvers currently implemented

None of them supports hierarchy

— HQP problems can only have two hierarchy levels.

All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

e To improve efficiency, two optimized versions have been developed:

e EiquadprogRealTime: the fastest, but matrix sizes known at
compile time

e EiquadprogFast: dynamic matrix sizes (memory allocation
performed only when resizing)

Available HQP Solvers

Several solvers currently implemented
None of them supports hierarchy
— HQP problems can only have two hierarchy levels.
All solvers based on EiQuadProg: a modified version of
uQuadProg++ working with Eigen
To improve efficiency, two optimized versions have been developed:
e EiquadprogRealTime: the fastest, but matrix sizes known at
compile time
e EiquadprogFast: dynamic matrix sizes (memory allocation
performed only when resizing)

Results on HRP-2's computer (very old):

60 variables, 18 equalities, 40 inequalities

%* PROFILING RESULTS [ms] (min - avg - max) *
IRIEIEGETEIEEE 0000000000000000000 0.651 0.704 0.870
Eiquadprog Fast 0.563 0.605 0.810
Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0 8

Exercises

Exercize 0

Open Virtual Machine.
Open Terminal and execute:
cd devel/src/tsid

git pull
spyder&

Open file
/home/student/devel/src/tsid/exercizes/ex_0_ur5_joint_space_control.py

Press F5 to run file.

	Introduction
	Details
	Exercises

