
Task-Space Inverse Dynamics:

Implementation (Joint Space)

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Table of contents

1. Introduction

2. Details

3. Exercises

1

Introduction

Introduction

This document explains the implementation of the control framework

Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID1.

TSID (currently) relies on:

• Eigen for linear algebra

• Pinocchio for multi-body dynamics computations

• Eiquadprog for solving Quadratic Programs

1https://github.com/stack-of-tasks/tsid

2

Introduction

This document explains the implementation of the control framework

Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID1.

TSID (currently) relies on:

• Eigen for linear algebra

• Pinocchio for multi-body dynamics computations

• Eiquadprog for solving Quadratic Programs

1https://github.com/stack-of-tasks/tsid

2

Introduction

This document explains the implementation of the control framework

Task-Space Inverse Dynamics (TSID).

To simplify the job we rely on the open-source C++ library TSID1.

TSID (currently) relies on:

• Eigen for linear algebra

• Pinocchio for multi-body dynamics computations

• Eiquadprog for solving Quadratic Programs

1https://github.com/stack-of-tasks/tsid

2

Main features: Pros & Cons

CONS

• Not mature (Feb 2017)

• Many missing features

• Hierarchy

• Joint pos limits

• Bilateral contacts

• Line contacts

• ...

PROS

• Efficient (<0.6 ms for

humanoid)

• Tested in simulation & on

HRP-2

• Open source

• Modular design

• → easy to extend

• Python bindings

• No alternative (AFAIK)

3

Main features: Pros & Cons

CONS

• Not mature (Feb 2017)

• Many missing features

• Hierarchy

• Joint pos limits

• Bilateral contacts

• Line contacts

• ...

PROS

• Efficient (<0.6 ms for

humanoid)

• Tested in simulation & on

HRP-2

• Open source

• Modular design

• → easy to extend

• Python bindings

• No alternative (AFAIK)

3

Key Concepts

Task

• JointPosture

• JointVelLimits

• JointTorqueLimits

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Inverse Dynamics Formulation

• collects Tasks and ...

• translates them into LSP

HQP Solver

• solves HQP (LSP)

4

Key Concepts

Task

• JointPosture

• JointVelLimits

• JointTorqueLimits

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Inverse Dynamics Formulation

• collects Tasks and ...

• translates them into LSP

HQP Solver

• solves HQP (LSP)

4

Key Concepts

Task

• JointPosture

• JointVelLimits

• JointTorqueLimits

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Inverse Dynamics Formulation

• collects Tasks and ...

• translates them into LSP

HQP Solver

• solves HQP (LSP)

4

Key Concepts

Task

• JointPosture

• JointVelLimits

• JointTorqueLimits

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Inverse Dynamics Formulation

• collects Tasks and ...

• translates them into LSP

HQP Solver

• solves HQP (LSP)

4

Details

Robot Wrapper

Interface for computing robot-related quantities:

RobotWrapper(string filename, vector<string> package_dirs,

JointModelVariant rootJoint);

int nq(); // size of configuration vector q

int nv(); // size of velocity vector v

Model & model(); // reference to robot model (Pinocchio)

// Compute all quantities and store them into data

void computeAllTerms(Data &data, Vector q, Vector v);

Matrix mass(Data data);

Vector nonLinearEffects(Data data);

5

InverseDynamicsFormulationBase

Central class of the whole library

Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData

6

InverseDynamicsFormulationBase

Central class of the whole library

Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData

6

InverseDynamicsFormulationBase

Central class of the whole library

Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData

6

InverseDynamicsFormulationBase

Central class of the whole library

Method to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

Method to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData

6

HQP Solvers

Using InverseDynamicsFormulationBase you get an HqpData object.

Then you need to solve this HQP.

All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nIn);

HqpOutput solve(HqpData data);

HqpOutput is defined as:

class HqpOutput

{

QpStatusFlag flag;

Vector x, lambda;

}

7

HQP Solvers

Using InverseDynamicsFormulationBase you get an HqpData object.

Then you need to solve this HQP.

All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nIn);

HqpOutput solve(HqpData data);

HqpOutput is defined as:

class HqpOutput

{

QpStatusFlag flag;

Vector x, lambda;

}

7

HQP Solvers

Using InverseDynamicsFormulationBase you get an HqpData object.

Then you need to solve this HQP.

All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nIn);

HqpOutput solve(HqpData data);

HqpOutput is defined as:

class HqpOutput

{

QpStatusFlag flag;

Vector x, lambda;

}

7

HQP Solvers

Using InverseDynamicsFormulationBase you get an HqpData object.

Then you need to solve this HQP.

All HQP solvers implement this interface (SolverHQPBase):

void resize(int nVar, int nEq, int nIn);

HqpOutput solve(HqpData data);

HqpOutput is defined as:

class HqpOutput

{

QpStatusFlag flag;

Vector x, lambda;

}

7

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0

8

Available HQP Solvers

• Several solvers currently implemented

• None of them supports hierarchy

• → HQP problems can only have two hierarchy levels.

• All solvers based on EiQuadProg: a modified version of

uQuadProg++ working with Eigen

• To improve efficiency, two optimized versions have been developed:

• EiquadprogRealTime: the fastest, but matrix sizes known at

compile time

• EiquadprogFast: dynamic matrix sizes (memory allocation

performed only when resizing)

Results on HRP-2’s computer (very old):

60 variables, 18 equalities, 40 inequalities

*** PROFILING RESULTS [ms] (min - avg - max) ***

Eiquadprog 0.651 0.704 0.870

Eiquadprog Fast 0.563 0.605 0.810

Eiquadprog Real Time 0.543 0.592 0.712

active inequalities 16.0 19.8 26.0 8

Exercises

Exercize 0

Open Virtual Machine.

Open Terminal and execute:

cd devel/src/tsid

git pull

spyder&

Open file

/home/student/devel/src/tsid/exercizes/ex 0 ur5 joint space control.py

Press F5 to run file.

9

	Introduction
	Details
	Exercises

