
Robust Task-Space Inverse Dynamics

Mathematical Details

Andrea Del Prete

University of Trento

Introduction

These slides explain the mathematical details of the robust optimization

problems solved in “Robustness to Joint-Torque Tracking Errors in

Task-Space Inverse Dynamics” [1].

1

Table of contents

1. Worst-Case Robust Least-Squares

2. Stochastic Least-Squares

2

Worst-Case Robust

Least-Squares

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}

• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Assume errors at different joints are independent from each other

• → use hyper-rectangle as uncertainty set

• e ∈ U, U = {z ∈ Rn : |z | ≤ emax}
• e = τdes − τ ∈ Rn is torque tracking error

• emax ∈ Rn is maximum torque tracking error

3

Robust Least-Squares

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• no uncertainty in cost function to avoid too conservative behavior

• problem not tractable in this form because of infinite number of

constraints

• beware of potential infeasibility: there may be no x satisfying

constraints for any e

4

Robust Least-Squares

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• no uncertainty in cost function to avoid too conservative behavior

• problem not tractable in this form because of infinite number of

constraints

• beware of potential infeasibility: there may be no x satisfying

constraints for any e

4

Robust Least-Squares

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• no uncertainty in cost function to avoid too conservative behavior

• problem not tractable in this form because of infinite number of

constraints

• beware of potential infeasibility: there may be no x satisfying

constraints for any e

4

Robust Least-Squares

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• no uncertainty in cost function to avoid too conservative behavior

• problem not tractable in this form because of infinite number of

constraints

• beware of potential infeasibility: there may be no x satisfying

constraints for any e

4

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

Reduction of Infinite Number of Constraints

• Rewrite infinite number of constraints:

B(x + e) + b ≥ 0 ∀e : |e| ≤ emax

• as a finite number of constraints:

minimum
e:|e|≤emax

[Bi (x + e) + bi] ≥ 0 i = 1 . . .m

• Bi is i-th row of B

• Interpretation if (and only if) inequality satisfied for minimum over

all possible uncertainties → satisfied for all possible uncertainties

• Rewrite as:

Bix − |Bi |emax + bi ≥ 0

• Geometric interpretation: do not check inequality for all values of U,

but only for worst corner

5

From Robust LS to Standard LS

• Reformulate Robust LS

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• as Standard LS:

minimize
x

||Ax − a||2

subject to Bx − |B|emax + b ≥ 0,

• where |B| contains absolute values of elements of B

6

From Robust LS to Standard LS

• Reformulate Robust LS

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• as Standard LS:

minimize
x

||Ax − a||2

subject to Bx − |B|emax + b ≥ 0,

• where |B| contains absolute values of elements of B

6

From Robust LS to Standard LS

• Reformulate Robust LS

minimize
x

||Ax − a||2

subject to B(x + e) + b ≥ 0 ∀e ∈ U

• as Standard LS:

minimize
x

||Ax − a||2

subject to Bx − |B|emax + b ≥ 0,

• where |B| contains absolute values of elements of B

6

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Infeasibility

• Problem may be infeasible

• IDEA be as robust as possible

• introduce slack variable s ∈ R to continuously morph from robust to

classic constraints:

minimize
x,s

||Ax − a||2 − ws

subject to Bx − |B|emaxs + b ≥ 0

0 ≤ s ≤ 1,

• where w ∈ R is large value (e.g., 106)

Interpretation

• If possible set s = 1 → robust constraints

• Otherwise decrease s as little as possible to make constraints feasible

• If necessary set s = 0 → standard constraints

7

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Worst-Case Robust TSID: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume torque tracking error e belongs to set U

• Model U as hyperplane, i.e. |e| ≤ emax

• Robust problem is intractable, but

• reformulate it as standard Least-Squares

• Handle infeasibility by introducing slack variable

8

Stochastic Least-Squares

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume errors at different joints are independent from each other

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Decoupled covariance matrix Σ = diag(
[
σ2
1 . . . σ2

n

]
)

9

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume errors at different joints are independent from each other

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Decoupled covariance matrix Σ = diag(
[
σ2
1 . . . σ2

n

]
)

9

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume errors at different joints are independent from each other

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Decoupled covariance matrix Σ = diag(
[
σ2
1 . . . σ2

n

]
)

9

Uncertainty Model

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume errors at different joints are independent from each other

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Decoupled covariance matrix Σ = diag(
[
σ2
1 . . . σ2

n

]
)

9

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Stochastic Least-Squares Program

• Stochastic Least-Squares Program:

minimize
x

||A(x + e)− a||2

subject to B(x + e) + b ≥ 0

• e is random variable → cost and constraints are random variables →
problem does not make sense

• IDEA Minimize expected value of cost, but e has zero mean →
nothing changed:

IE||A(x + e)− a||2 = ||Ax − a||2 + Tr(A>AΣ)

• Inequalities are less trivial

• Chance-constrained programming: replace inequalities with their

probability to be satisfied [3]:

p(x) = P(B(x + e) + b ≥ 0)

• p(.) not convex (in general) → not wise to use it directly!

10

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Convexity

• Do not use non-convex function p(.),

• use convex function R(.) = − log p(.)

• Add R(.) to cost function → trade-off performance (i.e. small cost)

and robustness:

minimize
x

||Ax − a||2 + wR(x)

subject to Bx + b ≥ 0,

• where w ∈ R weighs importance of robustness with respect to cost

• Keep deterministic inequalities to avoid violating them (it may

happen if w not large enough)

• Alternative: no trade off → apply strict prioritization approach!

11

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Multivariate Cumulative Density Function (CDF)

• To solve Stochastic LSP we need to evaluate CDF of eB = Be ∼ N :

P(eB ≥ −b − Bx)

• No analytical expression

• Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90

inequalities and 30 variables)

• IDEA consider probabilities of individual inequalities rather of all of

them:

pind(x) =
m∏
i=1

P(Bi (x + e) + bi ≥ 0),

• equivalent to neglecting off-diagonal terms of covariance matrix

• evaluate m univariate CDFs rather than one multivariate CDF →
much faster!

12

Univariate Cumulative Density Function (CDF)

• GOAL compute

P(Bi (x + e) + bi ≥ 0) = P(eBi ≥ −Bix − bi)

• where eBi = Bie ∼ N (0, σBi), where σBi = σ2
i BiB

>
i

• Rewrite in terms of CDF function FBi :

P(eBi ≤ Bix + bi) = FBi (Bix + bi)

• Most univariate distributions have analytical CDF, Gaussian does

not, but accurate & fast approximations exist (e.g., polynomials)

• Final robust problem:

minimize
x

||Ax − a||2 − w
m∑
i=1

log FBi (Bix + bi)

subject to Bx + b ≥ 0

13

Univariate Cumulative Density Function (CDF)

• GOAL compute

P(Bi (x + e) + bi ≥ 0) = P(eBi ≥ −Bix − bi)

• where eBi = Bie ∼ N (0, σBi), where σBi = σ2
i BiB

>
i

• Rewrite in terms of CDF function FBi :

P(eBi ≤ Bix + bi) = FBi (Bix + bi)

• Most univariate distributions have analytical CDF, Gaussian does

not, but accurate & fast approximations exist (e.g., polynomials)

• Final robust problem:

minimize
x

||Ax − a||2 − w
m∑
i=1

log FBi (Bix + bi)

subject to Bx + b ≥ 0

13

Univariate Cumulative Density Function (CDF)

• GOAL compute

P(Bi (x + e) + bi ≥ 0) = P(eBi ≥ −Bix − bi)

• where eBi = Bie ∼ N (0, σBi), where σBi = σ2
i BiB

>
i

• Rewrite in terms of CDF function FBi :

P(eBi ≤ Bix + bi) = FBi (Bix + bi)

• Most univariate distributions have analytical CDF, Gaussian does

not, but accurate & fast approximations exist (e.g., polynomials)

• Final robust problem:

minimize
x

||Ax − a||2 − w
m∑
i=1

log FBi (Bix + bi)

subject to Bx + b ≥ 0

13

Univariate Cumulative Density Function (CDF)

• GOAL compute

P(Bi (x + e) + bi ≥ 0) = P(eBi ≥ −Bix − bi)

• where eBi = Bie ∼ N (0, σBi), where σBi = σ2
i BiB

>
i

• Rewrite in terms of CDF function FBi :

P(eBi ≤ Bix + bi) = FBi (Bix + bi)

• Most univariate distributions have analytical CDF, Gaussian does

not, but accurate & fast approximations exist (e.g., polynomials)

• Final robust problem:

minimize
x

||Ax − a||2 − w
m∑
i=1

log FBi (Bix + bi)

subject to Bx + b ≥ 0

13

Univariate Cumulative Density Function (CDF)

• GOAL compute

P(Bi (x + e) + bi ≥ 0) = P(eBi ≥ −Bix − bi)

• where eBi = Bie ∼ N (0, σBi), where σBi = σ2
i BiB

>
i

• Rewrite in terms of CDF function FBi :

P(eBi ≤ Bix + bi) = FBi (Bix + bi)

• Most univariate distributions have analytical CDF, Gaussian does

not, but accurate & fast approximations exist (e.g., polynomials)

• Final robust problem:

minimize
x

||Ax − a||2 − w
m∑
i=1

log FBi (Bix + bi)

subject to Bx + b ≥ 0

13

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

Stochastic Least-Squares: Summary

• Assume additive uncertainties on joint torques: τ = τdes + e

• Assume e is Gaussian random variable: e ∼ N (0,Σ)

• Replace cost function with its expected value → nothing changes

• Replace inequalities with their probability to be satisfied:

p(x) = P(B(x + e) + b ≥ 0)

• Computing multi-variate CDF is too slow → approximate it as

product of univariate CDF:

p(x) ≈
m∏
i=1

P(Bi (x + e) + bi ≥ 0)

• Final problem is nonlinear, convex and smooth

14

References i

A. Del Prete and N. Mansard.

Robustness to Joint-Torque Tracking Errors in Task-Space

Inverse Dynamics.

IEEE Transaction on Robotics, 32(5):1091 – 1105, 2016.

A. Genz.

Numerical computation of multivariate normal probabilities.

Journal of computational and graphical statistics, 1(2):140–149,

1992.

R. Henrion.

Introduction to Chance Constrained Programming.

Technical report, 2004.

15

	Worst-Case Robust Least-Squares
	Stochastic Least-Squares

