Robust Task-Space Inverse Dynamics

Mathematical Details

Andrea Del Prete

University of Trento

Introduction

These slides explain the mathematical details of the robust optimization problems solved in "Robustness to Joint-Torque Tracking Errors in Task-Space Inverse Dynamics" [1].

Table of contents

1. Worst-Case Robust Least-Squares
2. Stochastic Least-Squares

Worst-Case Robust Least-Squares

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Assume errors at different joints are independent from each other

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Assume errors at different joints are independent from each other
- \rightarrow use hyper-rectangle as uncertainty set

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Assume errors at different joints are independent from each other
- \rightarrow use hyper-rectangle as uncertainty set
- $e \in U, \quad U=\left\{z \in \mathbb{R}^{n}:|z| \leq e^{\max }\right\}$

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Assume errors at different joints are independent from each other
- \rightarrow use hyper-rectangle as uncertainty set
- $e \in U, \quad U=\left\{z \in \mathbb{R}^{n}:|z| \leq e^{\max }\right\}$
- $e=\tau^{\text {des }}-\tau \in \mathbb{R}^{n}$ is torque tracking error

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Assume errors at different joints are independent from each other
- \rightarrow use hyper-rectangle as uncertainty set
- $e \in U, \quad U=\left\{z \in \mathbb{R}^{n}:|z| \leq e^{\max }\right\}$
- $e=\tau^{\text {des }}-\tau \in \mathbb{R}^{n}$ is torque tracking error
- $e^{\text {max }} \in \mathbb{R}^{n}$ is maximum torque tracking error

Robust Least-Squares

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

Robust Least-Squares

$$
\begin{array}{cl}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{array}
$$

- no uncertainty in cost function to avoid too conservative behavior

Robust Least-Squares

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

- no uncertainty in cost function to avoid too conservative behavior
- problem not tractable in this form because of infinite number of constraints

Robust Least-Squares

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

- no uncertainty in cost function to avoid too conservative behavior
- problem not tractable in this form because of infinite number of constraints
- beware of potential infeasibility: there may be no x satisfying constraints for any e

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

- as a finite number of constraints:

$$
\underset{e:|e| \leq e^{\max }}{\operatorname{minimum}}\left[B_{i}(x+e)+b_{i}\right] \geq 0 \quad i=1 \ldots m
$$

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

- as a finite number of constraints:

$$
\underset{e:|e| \leq e^{\max }}{\operatorname{minimum}}\left[B_{i}(x+e)+b_{i}\right] \geq 0 \quad i=1 \ldots m
$$

- B_{i} is i-th row of B

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

- as a finite number of constraints:

$$
\operatorname{minimume}_{e:|e| \leq e^{\max }}\left[B_{i}(x+e)+b_{i}\right] \geq 0 \quad i=1 \ldots m
$$

- B_{i} is i-th row of B
- Interpretation if (and only if) inequality satisfied for minimum over all possible uncertainties \rightarrow satisfied for all possible uncertainties

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

- as a finite number of constraints:

$$
\underset{e:|e| \leq e^{\text {max }}}{\operatorname{minimum}}\left[B_{i}(x+e)+b_{i}\right] \geq 0 \quad i=1 \ldots m
$$

- B_{i} is i-th row of B
- Interpretation if (and only if) inequality satisfied for minimum over all possible uncertainties \rightarrow satisfied for all possible uncertainties
- Rewrite as:

$$
B_{i} x-\left|B_{i}\right| e^{\max }+b_{i} \geq 0
$$

Reduction of Infinite Number of Constraints

- Rewrite infinite number of constraints:

$$
B(x+e)+b \geq 0 \quad \forall e:|e| \leq e^{\max }
$$

- as a finite number of constraints:

$$
\underset{e:|e| \leq e^{\max }}{\operatorname{minimum}}\left[B_{i}(x+e)+b_{i}\right] \geq 0 \quad i=1 \ldots m
$$

- B_{i} is i-th row of B
- Interpretation if (and only if) inequality satisfied for minimum over all possible uncertainties \rightarrow satisfied for all possible uncertainties
- Rewrite as:

$$
B_{i} x-\left|B_{i}\right| e^{\max }+b_{i} \geq 0
$$

- Geometric interpretation: do not check inequality for all values of U, but only for worst corner

From Robust LS to Standard LS

- Reformulate Robust LS

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

From Robust LS to Standard LS

- Reformulate Robust LS

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

- as Standard LS:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a \mid\|^{2} \\
\text { subject to } & B x-|B| e^{\max }+b \geq 0
\end{aligned}
$$

From Robust LS to Standard LS

- Reformulate Robust LS

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0 \quad \forall e \in U
\end{aligned}
$$

- as Standard LS:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \| A x-a| |^{2} \\
\text { subject to } & B x-|B| e^{\max }+b \geq 0
\end{aligned}
$$

- where $|B|$ contains absolute values of elements of B

Infeasibility

- Problem may be infeasible

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible
- introduce slack variable $s \in \mathbb{R}$ to continuously morph from robust to classic constraints:

$$
\begin{array}{cl}
\underset{x, s}{\operatorname{minimize}} & \|A x-a\|^{2}-w s \\
\text { subject to } & B x-|B| e^{\max } s+b \geq 0 \\
& 0 \leq s \leq 1
\end{array}
$$

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible
- introduce slack variable $s \in \mathbb{R}$ to continuously morph from robust to classic constraints:

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \|A x-a\|^{2}-w s \\
\text { subject to } & B x-|B| e^{\max } s+b \geq 0 \\
& 0 \leq s \leq 1,
\end{aligned}
$$

- where $w \in \mathbb{R}$ is large value (e.g., 10^{6})

Interpretation

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible
- introduce slack variable $s \in \mathbb{R}$ to continuously morph from robust to classic constraints:

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \|A x-a\|^{2}-w s \\
\text { subject to } & B x-|B| e^{\max } s+b \geq 0 \\
& 0 \leq s \leq 1,
\end{aligned}
$$

- where $w \in \mathbb{R}$ is large value (e.g., 10^{6})

Interpretation

- If possible set $s=1 \rightarrow$ robust constraints

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible
- introduce slack variable $s \in \mathbb{R}$ to continuously morph from robust to classic constraints:

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \|A x-a\|^{2}-w s \\
\text { subject to } & B x-|B| e^{\max } s+b \geq 0 \\
& 0 \leq s \leq 1
\end{aligned}
$$

- where $w \in \mathbb{R}$ is large value (e.g., 10^{6})

Interpretation

- If possible set $s=1 \rightarrow$ robust constraints
- Otherwise decrease s as little as possible to make constraints feasible

Infeasibility

- Problem may be infeasible
- IDEA be as robust as possible
- introduce slack variable $s \in \mathbb{R}$ to continuously morph from robust to classic constraints:

$$
\begin{aligned}
\underset{x, s}{\operatorname{minimize}} & \|A x-a\|^{2}-w s \\
\text { subject to } & B x-|B| e^{\max } s+b \geq 0 \\
& 0 \leq s \leq 1,
\end{aligned}
$$

- where $w \in \mathbb{R}$ is large value (e.g., 10^{6})

Interpretation

- If possible set $s=1 \rightarrow$ robust constraints
- Otherwise decrease s as little as possible to make constraints feasible
- If necessary set $s=0 \rightarrow$ standard constraints

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Model U as hyperplane, i.e. $|e| \leq e^{\max }$

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Model U as hyperplane, i.e. $|e| \leq e^{\max }$
- Robust problem is intractable, but

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Model U as hyperplane, i.e. $|e| \leq e^{\max }$
- Robust problem is intractable, but
- reformulate it as standard Least-Squares

Worst-Case Robust TSID: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume torque tracking error e belongs to set U
- Model U as hyperplane, i.e. $|e| \leq e^{\max }$
- Robust problem is intractable, but
- reformulate it as standard Least-Squares
- Handle infeasibility by introducing slack variable

Stochastic Least-Squares

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume errors at different joints are independent from each other

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume errors at different joints are independent from each other
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$

Uncertainty Model

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume errors at different joints are independent from each other
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$
- Decoupled covariance matrix $\Sigma=\operatorname{diag}\left(\left[\begin{array}{lll}\sigma_{1}^{2} & \ldots & \sigma_{n}^{2}\end{array}\right]\right)$

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{aligned}
$$

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{array}{cl}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{array}
$$

- e is random variable \rightarrow cost and constraints are random variables \rightarrow problem does not make sense

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{aligned}
$$

- e is random variable \rightarrow cost and constraints are random variables \rightarrow problem does not make sense
- IDEA Minimize expected value of cost, but e has zero mean \rightarrow nothing changed:

$$
\mathbf{E}\|A(x+e)-a\|^{2}=\|A x-a\|^{2}+\operatorname{Tr}\left(A^{\top} A \Sigma\right)
$$

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{aligned}
$$

- e is random variable \rightarrow cost and constraints are random variables \rightarrow problem does not make sense
- IDEA Minimize expected value of cost, but e has zero mean \rightarrow nothing changed:

$$
\mathbf{E}\|A(x+e)-a\|^{2}=\|A x-a\|^{2}+\operatorname{Tr}\left(A^{\top} A \Sigma\right)
$$

- Inequalities are less trivial

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{aligned}
$$

- e is random variable \rightarrow cost and constraints are random variables \rightarrow problem does not make sense
- IDEA Minimize expected value of cost, but e has zero mean \rightarrow nothing changed:

$$
\mathbf{E}\|A(x+e)-a\|^{2}=\|A x-a\|^{2}+\operatorname{Tr}\left(A^{\top} A \Sigma\right)
$$

- Inequalities are less trivial
- Chance-constrained programming: replace inequalities with their probability to be satisfied [3]:

$$
p(x)=\mathrm{P}(B(x+e)+b \geq 0)
$$

Stochastic Least-Squares Program

- Stochastic Least-Squares Program:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A(x+e)-a\|^{2} \\
\text { subject to } & B(x+e)+b \geq 0
\end{aligned}
$$

- e is random variable \rightarrow cost and constraints are random variables \rightarrow problem does not make sense
- IDEA Minimize expected value of cost, but e has zero mean \rightarrow nothing changed:

$$
\mathbf{E}\|A(x+e)-a\|^{2}=\|A x-a\|^{2}+\operatorname{Tr}\left(A^{\top} A \Sigma\right)
$$

- Inequalities are less trivial
- Chance-constrained programming: replace inequalities with their probability to be satisfied [3]:

$$
p(x)=\mathrm{P}(B(x+e)+b \geq 0)
$$

- $p($.$) not convex (in general) \rightarrow$ not wise to use it directly!

Convexity

- Do not use non-convex function $p($.$) ,$

Convexity

- Do not use non-convex function $p($.$) ,$
- use convex function $R()=.-\log p($.

Convexity

- Do not use non-convex function $p($.$) ,$
- use convex function $R()=.-\log p($.
- Add $R($.$) to cost function \rightarrow$ trade-off performance (i.e. small cost) and robustness:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2}+w R(x) \\
\text { subject to } & B x+b \geq 0
\end{array}
$$

Convexity

- Do not use non-convex function $p($.$) ,$
- use convex function $R()=.-\log p($.
- Add $R($.$) to cost function \rightarrow$ trade-off performance (i.e. small cost) and robustness:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2}+w R(x) \\
\text { subject to } & B x+b \geq 0
\end{array}
$$

- where $w \in \mathbb{R}$ weighs importance of robustness with respect to cost

Convexity

- Do not use non-convex function $p($.$) ,$
- use convex function $R()=.-\log p($.
- Add $R($.$) to cost function \rightarrow$ trade-off performance (i.e. small cost) and robustness:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2}+w R(x) \\
\text { subject to } & B x+b \geq 0
\end{array}
$$

- where $w \in \mathbb{R}$ weighs importance of robustness with respect to cost
- Keep deterministic inequalities to avoid violating them (it may happen if w not large enough)

Convexity

- Do not use non-convex function $p($.$) ,$
- use convex function $R()=.-\log p($.
- Add $R($.$) to cost function \rightarrow$ trade-off performance (i.e. small cost) and robustness:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2}+w R(x) \\
\text { subject to } & B x+b \geq 0
\end{array}
$$

- where $w \in \mathbb{R}$ weighs importance of robustness with respect to cost
- Keep deterministic inequalities to avoid violating them (it may happen if w not large enough)
- Alternative: no trade off \rightarrow apply strict prioritization approach!

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
\mathrm{P}\left(e_{B} \geq-b-B x\right)
$$

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
\mathrm{P}\left(e_{B} \geq-b-B x\right)
$$

- No analytical expression

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
\mathrm{P}\left(e_{B} \geq-b-B x\right)
$$

- No analytical expression
- Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90 inequalities and 30 variables)

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
\mathrm{P}\left(e_{B} \geq-b-B x\right)
$$

- No analytical expression
- Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90 inequalities and 30 variables)
- IDEA consider probabilities of individual inequalities rather of all of them:

$$
p_{\text {ind }}(x)=\prod_{i=1}^{m} \mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)
$$

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
\mathrm{P}\left(e_{B} \geq-b-B x\right)
$$

- No analytical expression
- Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90 inequalities and 30 variables)
- IDEA consider probabilities of individual inequalities rather of all of them:

$$
p_{\text {ind }}(x)=\prod_{i=1}^{m} \mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)
$$

- equivalent to neglecting off-diagonal terms of covariance matrix

Multivariate Cumulative Density Function (CDF)

- To solve Stochastic LSP we need to evaluate CDF of $e_{B}=B e \sim \mathcal{N}$:

$$
P\left(e_{B} \geq-b-B x\right)
$$

- No analytical expression
- Numerical techniques [2] are too slow for control (e.g., 0.5 s for 90 inequalities and 30 variables)
- IDEA consider probabilities of individual inequalities rather of all of them:

$$
p_{\text {ind }}(x)=\prod_{i=1}^{m} \mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)
$$

- equivalent to neglecting off-diagonal terms of covariance matrix
- evaluate m univariate CDFs rather than one multivariate CDF \rightarrow much faster!

Univariate Cumulative Density Function (CDF)

- GOAL compute

$$
\mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)=\mathrm{P}\left(e_{B_{i}} \geq-B_{i} x-b_{i}\right)
$$

Univariate Cumulative Density Function (CDF)

- GOAL compute

$$
\mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)=\mathrm{P}\left(e_{B_{i}} \geq-B_{i} x-b_{i}\right)
$$

- where $e_{B_{i}}=B_{i} e \sim \mathcal{N}\left(0, \sigma_{B_{i}}\right)$, where $\sigma_{B_{i}}=\sigma_{i}^{2} B_{i} B_{i}^{\top}$

Univariate Cumulative Density Function (CDF)

- GOAL compute

$$
\mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)=\mathrm{P}\left(e_{B_{i}} \geq-B_{i} x-b_{i}\right)
$$

- where $e_{B_{i}}=B_{i} e \sim \mathcal{N}\left(0, \sigma_{B_{i}}\right)$, where $\sigma_{B_{i}}=\sigma_{i}^{2} B_{i} B_{i}^{\top}$
- Rewrite in terms of CDF function $F_{B_{i}}$:

$$
\mathrm{P}\left(e_{B_{i}} \leq B_{i} x+b_{i}\right)=F_{B_{i}}\left(B_{i} x+b_{i}\right)
$$

Univariate Cumulative Density Function (CDF)

- GOAL compute

$$
\mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)=\mathrm{P}\left(e_{B_{i}} \geq-B_{i} x-b_{i}\right)
$$

- where $e_{B_{i}}=B_{i} e \sim \mathcal{N}\left(0, \sigma_{B_{i}}\right)$, where $\sigma_{B_{i}}=\sigma_{i}^{2} B_{i} B_{i}^{\top}$
- Rewrite in terms of CDF function $F_{B_{i}}$:

$$
\mathrm{P}\left(e_{B_{i}} \leq B_{i} x+b_{i}\right)=F_{B_{i}}\left(B_{i} x+b_{i}\right)
$$

- Most univariate distributions have analytical CDF, Gaussian does not, but accurate \& fast approximations exist (e.g., polynomials)

Univariate Cumulative Density Function (CDF)

- GOAL compute

$$
\mathrm{P}\left(B_{i}(x+e)+b_{i} \geq 0\right)=\mathrm{P}\left(e_{B_{i}} \geq-B_{i} x-b_{i}\right)
$$

- where $e_{B_{i}}=B_{i} e \sim \mathcal{N}\left(0, \sigma_{B_{i}}\right)$, where $\sigma_{B_{i}}=\sigma_{i}^{2} B_{i} B_{i}^{\top}$
- Rewrite in terms of CDF function $F_{B_{i}}$:

$$
\mathrm{P}\left(e_{B_{i}} \leq B_{i} x+b_{i}\right)=F_{B_{i}}\left(B_{i} x+b_{i}\right)
$$

- Most univariate distributions have analytical CDF, Gaussian does not, but accurate \& fast approximations exist (e.g., polynomials)
- Final robust problem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \|A x-a\|^{2}-w \sum_{i=1}^{m} \log F_{B_{i}}\left(B_{i} x+b_{i}\right) \\
\text { subject to } & B x+b \geq 0
\end{array}
$$

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{d e s}+e$
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$
- Replace cost function with its expected value \rightarrow nothing changes

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+\mathrm{e}$
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$
- Replace cost function with its expected value \rightarrow nothing changes
- Replace inequalities with their probability to be satisfied:

$$
p(x)=\mathrm{P}(B(x+e)+b \geq 0)
$$

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$
- Replace cost function with its expected value \rightarrow nothing changes
- Replace inequalities with their probability to be satisfied:

$$
p(x)=\mathrm{P}(B(x+e)+b \geq 0)
$$

- Computing multi-variate CDF is too slow \rightarrow approximate it as product of univariate CDF:

$$
p(x) \approx \prod_{i=1}^{m} P\left(B_{i}(x+e)+b_{i} \geq 0\right)
$$

Stochastic Least-Squares: Summary

- Assume additive uncertainties on joint torques: $\tau=\tau^{\text {des }}+e$
- Assume e is Gaussian random variable: $e \sim \mathcal{N}(0, \Sigma)$
- Replace cost function with its expected value \rightarrow nothing changes
- Replace inequalities with their probability to be satisfied:

$$
p(x)=\mathrm{P}(B(x+e)+b \geq 0)
$$

- Computing multi-variate CDF is too slow \rightarrow approximate it as product of univariate CDF:

$$
p(x) \approx \prod_{i=1}^{m} P\left(B_{i}(x+e)+b_{i} \geq 0\right)
$$

- Final problem is nonlinear, convex and smooth

References i

目
A. Del Prete and N. Mansard.

Robustness to Joint-Torque Tracking Errors in Task-Space Inverse Dynamics.
IEEE Transaction on Robotics, 32(5):1091-1105, 2016.
A. Genz.

Numerical computation of multivariate normal probabilities. Journal of computational and graphical statistics, 1(2):140-149, 1992.

圊
R. Henrion.

Introduction to Chance Constrained Programming.
Technical report, 2004.

