Robot Modeling

Optimization-based Control of Legged Robots

Andrea Del Prete

University of Trento, 2023

Schedule

Classroom Code: 4qb7dbt

First part:

- 1. Modeling (\approx 1 hour)
- 2. Joint-Space Control (pprox 1 hour)
- 3. Task-Space Control (≈ 1 hour)
- 4. Implementation (\approx 1 hour)
- 5. Coding (\approx 2 hours)

Schedule

Classroom Code: 4qb7dbt

First part:

- 1. Modeling (\approx 1 hour)
- 2. Joint-Space Control (pprox 1 hour)
- 3. Task-Space Control (≈ 1 hour)
- 4. Implementation (≈ 1 hour)
- 5. Coding (\approx 2 hours)

Second part:

- 1. Limits of Reactive Control (\approx 0.5 hour)
- 2. Linear Inverted Pendulum Model \approx 0.5 hour)
- 3. Center of Mass Trajectory Generation (pprox 1 hour)
- 4. Implementation (\approx 1 hour)
- 5. Coding: CoM trajectory optimization ($\approx 1 \text{ hour})$
- 6. Coding: walking with TSID (\approx 2 hours)

- use provided docker image
 - docker pull andreadelprete/orc23:casadi
 - password: iamarobot
 - Follow instructions on shared folder

- use provided docker image
 - docker pull andreadelprete/orc23:casadi
 - password: iamarobot
 - Follow instructions on shared folder
- install TSID and dependencies on your Ubuntu machine

- use provided docker image
 - docker pull andreadelprete/orc23:casadi
 - password: iamarobot
 - Follow instructions on shared folder
- install TSID and dependencies on your Ubuntu machine
 - either with Debian packages: sudo apt install ...

- use provided docker image
 - docker pull andreadelprete/orc23:casadi
 - password: iamarobot
 - Follow instructions on shared folder
- install TSID and dependencies on your Ubuntu machine
 - either with Debian packages: sudo apt install ...
 - or compiling source code available on github.com:
 - TSID
 - Pinocchio
 - Gepetto-viewer
 - Gepetto-viewer-corba
 - example-robot-data

- 1. Modeling Robot Manipulators
- 2. Modeling Robots in Contact
- 3. Modeling Legged Robots

State $\triangleq x$.

Control $\triangleq u$.

State $\triangleq x$. Control $\triangleq u$. Identity matrix $\triangleq I$. Zero matrix $\triangleq 0$. Matrix size written as index (when needed), e.g., I_3 . State $\triangleq x$.

Control $\triangleq u$.

Identity matrix $\triangleq I$.

Zero matrix $\triangleq 0$.

Matrix size written as index (when needed), e.g., I_3 .

Fully actuated system: number of actuators = number of degrees of freedom (e.g., manipulator).

Under actuated system: number of actuators < number of degrees of freedom (e.g., legged robot, quadrotor).

Modeling Robot Manipulators

Robot Manipulators: Fixed-base Robots

Robot base is (typically) fixed (e.g., attached to the ground).

Configuration represented by vector $q \in \mathbb{R}^{n_q}$ of (relative) joint angles. Velocity represented by vector $v = \dot{q} \in \mathbb{R}^{n_v}$ of (relative) joint velocities.

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

Actuator models:

- velocity source
- acceleration source
- torque source
- ...

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

Actuator models:

- velocity source
- acceleration source
- torque source
- ...

Appropriate model depends on robot and task.

Model actuators as velocity sources.

- Good for hydraulic.
- Good for electric in certain conditions (e.g., manipulators).

Model actuators as velocity sources.

- Good for hydraulic.
- Good for electric in certain conditions (e.g., manipulators).

$$x \triangleq q$$

$$u \triangleq v$$

Dynamics is simple integrator:

$$\dot{x} = u$$

Model actuators as acceleration sources.

• Good for electric w/o large contact forces.

Model actuators as acceleration sources.

• Good for electric w/o large contact forces.

$$x \triangleq (q, v)$$

$$u \triangleq \dot{v}$$

Dynamics is double integrator:

$$\begin{bmatrix} \dot{q} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} q \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u$$

Torque Input

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case (unfortunately).

$$x \triangleq (q, v) \qquad u \triangleq \tau$$

Torque Input

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case (unfortunately).

$$x \triangleq (q, v) \qquad u \triangleq \tau$$

Dynamics of fully-actuated mechanical system (e.g., manipulator):

$$M(q)\dot{v}+h(q,v)=\tau,$$

where

- $M(q) \in \mathbb{R}^{n_v \times n_v} \triangleq$ (positive-definite) mass matrix,
- $h(q, v) \in \mathbb{R}^{n_v} \triangleq$ bias forces,
- $\tau \in \mathbb{R}^{n_v} \triangleq$ joint torques.

Bias forces sometimes decomposed as:

$$h(q,v) = C(q,v)v + g(q)$$

- $C(q, v)v \triangleq$ Coriolis and centrifugal effects
- $g(q) \triangleq$ gravity forces

Bias forces sometimes decomposed as:

$$h(q,v) = C(q,v)v + g(q)$$

- $C(q, v)v \triangleq$ Coriolis and centrifugal effects
- $g(q) \triangleq$ gravity forces

Nonlinear state-space dynamics:

$$\begin{bmatrix} \dot{q} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ -M(q)^{-1}h(q,v) \end{bmatrix} + \begin{bmatrix} 0 \\ M(q)^{-1} \end{bmatrix} u$$

Forward Dynamics Given q, v, τ compute \dot{v} :

$$\dot{v}=M(q)^{-1}(au-h(q,v))$$

Problem solved by simulators.

Forward Dynamics Given q, v, τ compute \dot{v} :

$$\dot{v} = M(q)^{-1}(\tau - h(q, v))$$

Problem solved by simulators.

Inverse Dynamics Given q, v, \dot{v} compute τ :

$$\tau = M(q)\dot{v} + h(q,v)$$

Problem solved by controllers.

Modeling Robots in Contact

If robot in contact with surrounding \rightarrow contact forces $\mathbf{f} \in \mathbb{R}^{n_f}$:

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\top}f,$$

where $J(q) \in \mathbb{R}^{n_f \times n_v} \triangleq$ contact Jacobian:

If robot in contact with surrounding \rightarrow contact forces $f \in \mathbb{R}^{n_f}$:

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\top}f,$$

where $J(q) \in \mathbb{R}^{n_f \times n_v} \triangleq$ contact Jacobian:

$$J(q) = rac{\partial c(q)}{\partial q},$$

where $c(q) : \mathbb{R}^{n_q} \to \mathbb{R}^{n_f} \triangleq$ forward geometry of contact points (i.e. function mapping joint angles to contact point positions).

 $c(q) = \text{const} \quad \iff \quad \text{Contact points do not move}$

 $c(q) = \text{const} \iff \text{Contact points do not move}$

Differentiate:

 $Jv = 0 \qquad \iff \qquad$ Contact point velocities are null $J\dot{v} + \dot{J}v = 0 \qquad \iff \qquad$ Contact point accelerations are null

 $c(q) = \text{const} \iff \text{Contact points do not move}$

Differentiate:

 $Jv = 0 \qquad \iff \qquad$ Contact point velocities are null $J\dot{v} + \dot{J}v = 0 \qquad \iff \qquad$ Contact point accelerations are null

Introduce constraints in dynamics:

$$\begin{bmatrix} M & -J^{\top} & -I \\ J & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -h \\ -j_{V} \end{bmatrix}$$
(1)

Forward Dynamics (with constraints) Given q, v, τ compute \dot{v} and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

Forward Dynamics (with constraints) Given q, v, τ compute \dot{v} and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

Inverse Dynamics (with constraints) Given q, v, \dot{v} compute τ and f:

$$\begin{bmatrix} \tau \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

Forward Dynamics (with constraints) Given q, v, τ compute \dot{v} and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

Inverse Dynamics (with constraints) Given q, v, \dot{v} compute τ and f:

$$\begin{bmatrix} \tau \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

Implicit assumption: \dot{v} satisfies constraints.

Forward Dynamics (with constraints) Given q, v, τ compute \dot{v} and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

Inverse Dynamics (with constraints) Given q, v, \dot{v} compute τ and f:

$$\begin{bmatrix} \tau \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

Implicit assumption: \dot{v} satisfies constraints.

Primitive version of inverse-dynamics control with rigid contacts.

Modeling Legged Robots

Modeling Legged (Floating-Base) Robots

PROBLEM

Joint angles not enough to describe robot configuration.

Modeling Legged (Floating-Base) Robots

PROBLEM

Joint angles not enough to describe robot configuration.

SOLUTION

Add pose (position + orientation) of one link (called base) w.r.t. inertial frame:

$$q = (\underbrace{x_b}, \underbrace{q_j})$$

Base pose Joint angles

Modeling Legged (Floating-Base) Robots

PROBLEM

Joint angles not enough to describe robot configuration.

SOLUTION

Add pose (position + orientation) of one link (called base) w.r.t. inertial frame:

$$q = (\underbrace{x_b}, \underbrace{q_j})$$

Base pose Joint angles

Now *q* sufficient to describe robot configuration in space.

 $x_b \in SE(3) \triangleq$ special Euclidian group, comprising any combination of

- translations: elements of $\mathbb{R}^3,$
- rotations: elements of $SO(3) \triangleq$ special orthogonal group

 $x_b \in SE(3) \triangleq$ special Euclidian group, comprising any combination of

- translations: elements of $\mathbb{R}^3,$
- rotations: elements of $SO(3) \triangleq$ special orthogonal group

Can represent SO(3) elements with:

- minimal representations: 3 elements but suffer from singularities (e.g., Euler angles, roll-pitch-yaw)
- redundant representations: ≥4 elements but free from singularities (e.g., quaternions, rotation matrices)

 $x_b \in SE(3) \triangleq$ special Euclidian group, comprising any combination of

- translations: elements of $\mathbb{R}^3,$
- rotations: elements of $SO(3) \triangleq$ special orthogonal group

Can represent SO(3) elements with:

- minimal representations: 3 elements but suffer from singularities (e.g., Euler angles, roll-pitch-yaw)
- redundant representations: ≥4 elements but free from singularities (e.g., quaternions, rotation matrices)

We represent SE(3) elements as 7d vectors: 3d for position, 4d for orientation (quaternion).

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Compared to rotation matrices: more compact, numerically stable, and efficient.

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Compared to rotation matrices: more compact, numerically stable, and efficient.

Any 3d rotation equivalent to single rotation by angle θ about fixed axis (unit vector $u = (u_x, u_y, u_z)$).

 $\begin{array}{l} \mbox{quaternion} = \left(u_x s, u_y s, u_z s, c\right) \\ \mbox{where } c = \cos \frac{\theta}{2} \mbox{ and } s = \sin \frac{\theta}{2}. \mbox{ Note that } ||\mbox{quaternion}|| = 1 \quad \forall \, \theta, u. \end{array}$

Robot configuration is $q = (x_b, q_j)$, where $x_b = (p_b, o_b) \in \mathbb{R}^7$.

Robot configuration is $q = (x_b, q_j)$, where $x_b = (p_b, o_b) \in \mathbb{R}^7$. Robot velocity is $v = (\nu_b, \dot{q}_j)$, where $\nu_b = (\dot{p}_b, \omega_b) \in \mathbb{R}^6$. Robot configuration is $q = (x_b, q_j)$, where $x_b = (p_b, o_b) \in \mathbb{R}^7$. Robot velocity is $v = (\nu_b, \dot{q}_j)$, where $\nu_b = (\dot{p}_b, \omega_b) \in \mathbb{R}^6$.

Angular velocity $\omega_b \in \mathbb{R}^3$ related to time derivative of associated rotation matrix $R_b \in \mathbb{R}^{3 \times 3}$ by:

$$\dot{R}_b = \hat{\omega}_b R_b \quad
ightarrow \quad R_b(t) = e^{\hat{\omega}_b t} R_b(0)$$

where $\hat{\omega}_b \in \mathbb{R}^{3 \times 3}$ is skew-symmetric matrix associated to ω_b .

Robot configuration is $q = (x_b, q_j)$, where $x_b = (p_b, o_b) \in \mathbb{R}^7$. Robot velocity is $v = (\nu_b, \dot{q}_j)$, where $\nu_b = (\dot{p}_b, \omega_b) \in \mathbb{R}^6$.

Angular velocity $\omega_b \in \mathbb{R}^3$ related to time derivative of associated rotation matrix $R_b \in \mathbb{R}^{3 \times 3}$ by:

$$\dot{R}_b = \hat{\omega}_b R_b \quad o \quad R_b(t) = e^{\hat{\omega}_b t} R_b(0)$$

where $\hat{\omega}_b \in \mathbb{R}^{3 \times 3}$ is skew-symmetric matrix associated to ω_b .

So q and v have different sizes $(n_q = n_v + 1)$

Underactuated systems: less actuators than DoFs:

< n_{va} n_v

number of actuators number of DoFs

Underactuated systems: less actuators than DoFs:

Assume ordered elements of $q \triangleq (q_u, q_a)$:

- $q_u \in \mathbb{R}^{n_{qu}}$: passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{q_a}}$: actuated joints.

Similarly, $v \triangleq (v_u, v_a)$, $v_u \in \mathbb{R}^{n_{vu}}$, $v_a \in \mathbb{R}^{n_{va}}$.

Underactuated systems: less actuators than DoFs:

Assume ordered elements of $q \triangleq (q_u, q_a)$:

- $q_u \in \mathbb{R}^{n_{qu}}$: passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{qa}}$: actuated joints.

Similarly, $v \triangleq (v_u, v_a)$, $v_u \in \mathbb{R}^{n_{vu}}$, $v_a \in \mathbb{R}^{n_{va}}$. $S \triangleq \begin{bmatrix} 0_{n_{va} \times n_{vu}} & I_{n_{va}} \end{bmatrix}$ is selection matrix:

$$v_a = Sv$$

Underactuated systems: less actuators than DoFs:

Assume ordered elements of $q \triangleq (q_u, q_a)$:

- $q_u \in \mathbb{R}^{n_{qu}}$: passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{qa}}$: actuated joints.

Similarly,
$$v \triangleq (v_u, v_a)$$
, $v_u \in \mathbb{R}^{n_{vu}}$, $v_a \in \mathbb{R}^{n_{va}}$
 $S \triangleq \begin{bmatrix} 0_{n_{va} \times n_{vu}} & I_{n_{va}} \end{bmatrix}$ is selection matrix:

$$v_a = Sv$$

For legged robots typically $q_u = x_b$ (all joints are actuated).

Dynamics of under-actuated mechanical system:

$$M(q)\dot{v} + h(q,v) = S^{ op} \tau + J(q)^{ op} f$$

Contrary to fully-actuated case: $\tau \in \mathbb{R}^{n_{va}}$.

Dynamics of under-actuated mechanical system:

$$M(q)\dot{v} + h(q,v) = S^{ op}\tau + J(q)^{ op}f$$

Contrary to fully-actuated case: $\tau \in \mathbb{R}^{n_{va}}$.

Often decomposed into unactuated and actuated parts:

$$M_u(q)\dot{v} + h_u(q,v) = J_u(q)^\top f$$

$$M_a(q)\dot{v} + h_a(q,v) = \tau + J_a(q)^\top f$$
(2)

where

$$M = \begin{bmatrix} M_u \\ M_a \end{bmatrix} \quad h = \begin{bmatrix} h_u \\ h_a \end{bmatrix} \quad J = \begin{bmatrix} J_u & J_a \end{bmatrix}$$
(3)

Manipulator:

$$M(q)\dot{v} + h(q,v) = \tau$$

Manipulator in contact:

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\top}f$$

Legged robot (in contact):

$$M(q)\dot{v} + h(q,v) = S^{\top}\tau + J(q)^{\top}f$$

If contacts are rigid:

$$J\dot{v} = -\dot{J}v$$