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Classroom Code: 4gb7dbt

First part:
1. Modeling (= 1 hour)
2. Joint-Space Control (= 1 hour)
3. Task-Space Control (= 1 hour)
4. Implementation (= 1 hour)
5. Coding (= 2 hours)

Second part:

Limits of Reactive Control (= 0.5 hour)

Linear Inverted Pendulum Model ~ 0.5 hour)
Center of Mass Trajectory Generation (= 1 hour)
Implementation (= 1 hour)

Coding: CoM trajectory optimization (= 1 hour)
Coding: walking with TSID (= 2 hours)
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e password: iamarobot
e Follow instructions on shared folder
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Options for coding

e use provided docker image

e docker pull andreadelprete/orc23:casadi
e password: iamarobot
e Follow instructions on shared folder

e install TSID and dependencies on your Ubuntu machine

e either with Debian packages: sudo apt install ...
e or compiling source code available on github.com:
TSID

Pinocchio

Gepetto-viewer

Gepetto-viewer-corba

example-robot-data
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Notation & Definitions

State £ x.
Control £ u.

Identity matrix £ /.
Zero matrix £ 0.
Matrix size written as index (when needed), e.g., /.

Fully actuated system: number of actuators = number of degrees of
freedom (e.g., manipulator).

Under actuated system: number of actuators < number of degrees of
freedom (e.g., legged robot, quadrotor).



Modeling Robot Manipulators



Robot Manipulators: Fixed-base Robots

Robot base is (typically) fixed (e.g., attached to the ground).

Configuration represented by vector g € R™ of (relative) joint angles.
Velocity represented by vector v = ¢ € R"™ of (relative) joint velocities.
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Actuation Models

Typically each joint driven by 1 actuator (e.g., electric, hydraulic,
pneumatic).

Actuator models:
e velocity source
e acceleration source

e torque source

Appropriate model depends on robot and task.



Velocity Input

Model actuators as velocity sources.

e Good for hydraulic.

e Good for electric in certain conditions (e.g., manipulators).
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Model actuators as velocity sources.

e Good for hydraulic.

e Good for electric in certain conditions (e.g., manipulators).
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X=4q
A
u=v
Dynamics is simple integrator:
X=u



Acceleration Input

Model actuators as acceleration sources.

e Good for electric w/o large contact forces.



Acceleration Input

Model actuators as acceleration sources.

e Good for electric w/o large contact forces.

x = (q,v)

(1>

Dynamics is double integrator:
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Torque Input

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case
(unfortunately).

4

x = (q,v) usr



Torque Input

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case
(unfortunately).
x = (q,v) us T
Dynamics of fully-actuated mechanical system (e.g., manipulator):
M(q)v + h(q,v) =,
where

e M(q) € R™*" £ (positive-definite) mass matrix,
e h(g,v) € R™ £ bias forces,

e 7 € R™ £ joint torques.



Torque Input: Fully-Actuated Dynamics

Bias forces sometimes decomposed as:
h(g,v) = C(q,v)v + g(q)

e C(q,v)v = Coriolis and centrifugal effects

e g(q) = gravity forces
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Torque Input: Fully-Actuated Dynamics

Bias forces sometimes decomposed as:
h(g,v) = C(q,v)v + g(q)

e C(q,v)v = Coriolis and centrifugal effects

e g(q) = gravity forces

Nonlinear state-space dynamics:
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Inverse VS Forward Dynamics

Forward Dynamics
Given g, v, T compute v:

v=M(q)"(r — h(q,v))

Problem solved by simulators.
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Inverse VS Forward Dynamics

Forward Dynamics
Given g, v, T compute v:

v =M(q)"}( — h(q,v))
Problem solved by simulators.

Inverse Dynamics
Given q, v, v compute T:

7= M(q)v + h(q, v)

Problem solved by controllers.
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Modeling Robots in Contact




Adding Contact Forces

If robot in contact with surrounding — contact forces f& R":
M(q)v + h(g,v) =7+ J(q)"f,

where J(q)€ R™*" £ contact Jacobian:
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Adding Contact Forces

If robot in contact with surrounding — contact forces f& R":
M(q)v + h(g,v) =7+ J(q)"f,

where J(q)€ R™*" £ contact Jacobian:

dc(q)
dq ’

where ¢(q) : R™ — R™ £ forward geometry of contact points (i.e.

J(q) =

function mapping joint angles to contact point positions).
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Robots in Rigid Contact

Rigid contacts constrain motion.
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Robots in Rigid Contact

Rigid contacts constrain motion.

c(q) = const — Contact points do not move

Differentiate:

Jv=20 — Contact point velocities are null

W+ Jv=0 = Contact point accelerations are null

Introduce constraints in dynamics:
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Inverse VS Forward Dynamics with Rigid Contacts

Forward Dynamics (with constraints)
Given g, v, T compute v and f:

-1 ] T

Problem solved by (bilateral) rigid contact simulators.
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Inverse VS Forward Dynamics with Rigid Contacts

Forward Dynamics (with constraints)
Given g, v, T compute v and f:

—il
v| M —JT] [r—n
fFl |4 O —Jv
Problem solved by (bilateral) rigid contact simulators.

Inverse Dynamics (with constraints)
Given g, v, v compute 7 and f:

H = [/ JT}T(MHh),

where T represents pseudo-inverse.
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Inverse VS Forward Dynamics with Rigid Contacts

Forward Dynamics (with constraints)
Given g, v, T compute v and f:

—il
v| M —JT] [r—n
fFl |4 O —Jv
Problem solved by (bilateral) rigid contact simulators.

Inverse Dynamics (with constraints)
Given g, v, v compute 7 and f:

H = [/ JT}T(MHh),

where T represents pseudo-inverse.
Implicit assumption: v satisfies constraints.
Primitive version of inverse-dynamics control with rigid contacts.
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Modeling Legged Robots




Modeling Legged (Floating-Base) Robots

PROBLEM
Joint angles not enough to describe robot

configuration.
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Add pose (position + orientation) of one
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Base pose Joint angles
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Modeling Legged (Floating-Base) Robots

PROBLEM
Joint angles not enough to describe robot

configuration.
SOLUTION
Add pose (position + orientation) of one
link (called base) w.r.t. inertial frame:
fry X, y H
g=( X g )

Base pose Joint angles

Now g sufficient to describe robot
configuration in space.
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Base Pose

xp € SE(3) £ special Euclidian group, comprising any combination of

e translations: elements of R3,

e rotations: elements of SO(3) £ special orthogonal group
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Base Pose

xp € SE(3) £ special Euclidian group, comprising any combination of
e translations: elements of R3,
e rotations: elements of SO(3) £ special orthogonal group

Can represent SO(3) elements with:

e minimal representations: 3 elements but suffer from singularities
(e.g., Euler angles, roll-pitch-yaw)

e redundant representations: >4 elements but free from singularities
(e.g., quaternions, rotation matrices)
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Base Pose

xp € SE(3) £ special Euclidian group, comprising any combination of
e translations: elements of R3,
e rotations: elements of SO(3) £ special orthogonal group

Can represent SO(3) elements with:

e minimal representations: 3 elements but suffer from singularities
(e.g., Euler angles, roll-pitch-yaw)

e redundant representations: >4 elements but free from singularities
(e.g., quaternions, rotation matrices)

We represent SE(3) elements as 7d vectors: 3d for position, 4d for
orientation (quaternion).
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aternions and Spatial Rotations

Unit quaternions: convenient notation for rotations in 3d.
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Quaternions and Spatial Rotations

Unit quaternions: convenient notation for rotations in 3d.

Compared to Euler angles: simpler to compose and avoid gimbal-lock
problem.
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aternions and Spatial Rotations

Unit quaternions: convenient notation for rotations in 3d.

Compared to Euler angles: simpler to compose and avoid gimbal-lock

problem.

Compared to rotation matrices: more compact, numerically stable, and

efficient.

Any 3d rotation equivalent to single rotation by angle 6 about fixed axis
(unit vector u = (uy, uy, uy)).
quaternion = (uys, uys, u,s, ¢)

where ¢ = cos ¢ and s = sin 4. Note that [|quaternion||=1 V0, u.
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Base Velocity

Robot configuration is ¢ = (xp, q;), where x, = (pp, 05) € R’.
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Base Velocity

Robot configuration is ¢ = (xp, q;), where x, = (pp, 05) € R’.
Robot velocity is v = (v, §;), where v, = (pp, wp) € R.

Angular velocity wy, € R related to time derivative of associated rotation
matrix R, € R3*3 by:

Rb =wpRp — Rb(t) = e‘:}btRb(O)

where &), € R3%3 is skew-symmetric matrix associated to wp.
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Base Velocity

Robot configuration is ¢ = (xp, q;), where x, = (pp, 05) € R’.
Robot velocity is v = (v, §;), where v, = (pp, wp) € R.

Angular velocity wy, € R related to time derivative of associated rotation
matrix R, € R3*3 by:

Rb =wpRp — Rb(t) = e‘:}btRb(O)

where &), € R3%3 is skew-symmetric matrix associated to wp.

So q and v have different sizes (ng = n, + 1)

18



Underactuated Systems

Underactuated systems: less actuators than DoFs:

Nya < ny,
~~ ~~
number of actuators number of DoFs
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Underactuated systems: less actuators than DoFs:
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Assume ordered elements of g = (qu, g,):

e g, € R": passive (unactuated) joints,

e g, € R": actuated joints.

Similarly, v = (v, v,), vy, € R™, v, € RM.
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Underactuated Systems

Underactuated systems: less actuators than DoFs:

Nya < ny,
~~ ~~
number of actuators number of DoFs

Assume ordered elements of g = (qu, g,):

e g, € R": passive (unactuated) joints,

® g, € R": actuated joints.
Similarly, v = (v, v,), vy, € R™, v, € RM.
S£ {O,,VEX,,W /,,VE} is selection matrix:
v, = Sv

For legged robots typically g, = x; (all joints are actuated).
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Under-Actuated Dynamic

Dynamics of under-actuated mechanical system:
M(q)v + h(g,v) = ST+ J(q)"f

Contrary to fully-actuated case: 7 € R™=,
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Under-Actuated Dynamic

Dynamics of under-actuated mechanical system:
M(q)v + h(g,v) = ST+ J(q)"f

Contrary to fully-actuated case: 7 € R™=,

Often decomposed into unactuated and actuated parts:

where

20



Manipulator:
M(q)v + h(q,v) =T

Manipulator in contact:
M(q)v + h(q,v) =7+ J(q)" f
Legged robot (in contact):
M(q)v + h(g,v) = ST7+ J(q)"f

If contacts are rigid:
Jv=—Jv
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