Joint-Space Control

Optimization-based Control of Legged Robots

Andrea Del Prete

University of Trento, 2023

- 1. [Joint-Space Inverse Dynamics Control](#page-2-0)
- 2. [Inverse Dynamics Control as Optimization Problem](#page-21-0)

[Joint-Space Inverse Dynamics](#page-2-0) [Control](#page-2-0)

Robot Manipulator

Given (nonlinear) manipulator dynamics:

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Robot Manipulator

Given (nonlinear) manipulator dynamics:

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Assumption We know dynamics and can measure q and v .

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Assumption We know dynamics and can measure q and v .

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Assumption We know dynamics and can measure q and v .

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

Select \dot{v}^d so that $q(t)$ follows $q^r(t)$:

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Assumption We know dynamics and can measure q and v .

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

Select \dot{v}^d so that $q(t)$ follows $q^r(t)$:

$$
\dot{v}^d = \dot{v}^r
$$

$$
M(q)\dot{v} + h(q, v) = \tau \tag{1}
$$

Problem Find $\tau(t)$ so that $q(t)$ follows reference $q'(t)$.

Assumption We know dynamics and can measure q and v .

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

Select \dot{v}^d so that $q(t)$ follows $q^r(t)$:

$$
\dot{v}^{d} = \dot{v}^{r} - K_{d}(v - v^{r}) - K_{p}(q - q^{r})
$$
\n(2)

where K_p, K_d are diagonal positive-definite gain matrices.

Closed-loop dynamics is

$$
\dot{v} = \dot{v}^r - K_d \underbrace{(v - v^r)}_{\dot{e}} - K_p \underbrace{(q - q^r)}_{e}
$$

Closed-loop dynamics is

$$
\dot{v} = \dot{v}^r - K_d \underbrace{(v - v^r)}_{\dot{e}} - K_p \underbrace{(q - q^r)}_{e}
$$

$$
\ddot{e} = -K_d \dot{e} - K_p e
$$

Closed-loop dynamics is

Closed-loop dynamics is

A is Hurwitz if K_p and K_d are diagonal and positive-definite \rightarrow $\lim_{t\to\infty} x(t) = 0 \to \lim_{t\to\infty} q(t) = q^r(t)$

This control law:

$$
\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h \tag{3}
$$

is known as:

- Inverse-Dynamics (ID) Control: because based on inverse dynamics computation.
- Computed Torque: because it computes torques needed to get desired accelerations.
- Feedback Linearization (from control theory): because it uses state feedback to linearize closed-loop dynamics.

This control law:

$$
\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h \tag{3}
$$

is known as:

- Inverse-Dynamics (ID) Control: because based on inverse dynamics computation.
- Computed Torque: because it computes torques needed to get desired accelerations.
- Feedback Linearization (from control theory): because it uses state feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

$$
\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h \tag{4}
$$

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

(5)

Simpler control laws often used for manipulators.

A common option is $PD+$ gravity compensation:

Another (even simpler) option is PID control:

$$
\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) \, \mathrm{d}s \tag{6}
$$

where integral replaces gravity compensation.

(5)

Simpler control laws often used for manipulators.

A common option is $PD+$ gravity compensation:

Another (even simpler) option is PID control:

$$
\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) \, \mathrm{d}s \tag{6}
$$

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q \rightarrow q^r$).

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

Another (even simpler) option is PID control:

$$
\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) \, \mathrm{d}s \tag{6}
$$

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q \rightarrow q^r$). In theory "ID control" outperforms "PD+gravity", which outperforms "PID".

Simpler control laws often used for manipulators.

A common option is $PD+$ gravity compensation:

Another (even simpler) option is PID control:

$$
\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) \, \mathrm{d}s \tag{6}
$$

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q \rightarrow q^r$).

In theory "ID control" outperforms "PD+gravity", which outperforms "PID".

In practice the opposite could occur because of model errors.

[Inverse Dynamics Control as](#page-21-0) [Optimization Problem](#page-21-0)

$$
(\tau^*, \dot{v}^*) = \underset{\tau, \dot{v}}{\operatorname{argmin}} \qquad ||\dot{v} - \dot{v}^d||^2
$$

subject to $M\dot{v} + h = \tau$ (7)

with $\dot{v}^d = \dot{v}^r - K_d \dot{e} - K_p e$

$$
(\tau^*, \dot{v}^*) = \underset{\tau, \dot{v}}{\operatorname{argmin}} \qquad ||\dot{v} - \dot{v}^d||^2
$$

subject to $M\dot{v} + h = \tau$ (7)

with $\dot{v}^d=\dot{v}^r-K_d\dot{e}-K_pe,$ is exactly the ID control law:

$$
\tau^* = M\dot{v}^d + h,\tag{8}
$$

$$
(\tau^*, \dot{v}^*) = \underset{\tau, \dot{v}}{\operatorname{argmin}} \qquad ||\dot{v} - \dot{v}^d||^2
$$

subject to $M\dot{v} + h = \tau$ (7)

with $\dot{v}^d=\dot{v}^r-K_d\dot{e}-K_pe,$ is exactly the ID control law:

$$
\tau^* = M\dot{v}^d + h,\tag{8}
$$

No advantage in solving [\(7\)](#page-22-0) to compute [\(8\)](#page-22-1), but [\(7\)](#page-22-0) is starting point to solve more complex problems.

$$
(\tau^*, \dot{v}^*) = \underset{\tau, \dot{v}}{\operatorname{argmin}} \qquad ||\dot{v} - \dot{v}^d||^2
$$

subject to $M\dot{v} + h = \tau$ (7)

with $\dot{v}^d=\dot{v}^r-K_d\dot{e}-K_pe,$ is exactly the ID control law:

$$
\tau^* = M\dot{v}^d + h,\tag{8}
$$

No advantage in solving (7) to compute (8) , but (7) is starting point to solve more complex problems.

Problem [\(7\)](#page-22-0) is Least-Squares Program/Problem (LSP).

- linear equality/inequality constraints $(Ax \leq b)$, or $Ax = b$)
- 2-norm of linear cost function $(||Ax b||^2)$

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- $\bullet\,$ convex quadratic cost function $(x^\top H x + h^\top x)$, with $H\geq 0)$

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- $\bullet\,$ convex quadratic cost function $(x^\top H x + h^\top x)$, with $H\geq 0)$

LSPs and convex QPs can be solved extremely fast with off-the-shelf softwares

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints $(Ax \leq b$, or $Ax = b)$
- $\bullet\,$ convex quadratic cost function $(x^\top H x + h^\top x)$, with $H\geq 0)$

LSPs and convex QPs can be solved extremely fast with off-the-shelf softwares

 \rightarrow We can solve LSP/QPs inside 1 kHz control loops!

Take the ID control LSP:

$$
\begin{array}{ll}\n\text{minimize} & ||\dot{v} - \dot{v}^d||^2 \\
\text{subject to} & M\dot{v} + h = \tau\n\end{array} \tag{9}
$$

Take the ID control LSP:

$$
\begin{array}{ll}\n\text{minimize} & ||\dot{v} - \dot{v}^d||^2 \\
\text{subject to} & M\dot{v} + h = \tau\n\end{array} \tag{9}
$$

LSPs allow for linear inequality constraints \rightarrow we can add torque limits:

$$
\begin{array}{ll}\n\text{minimize} & ||\dot{v} - \dot{v}^d||^2 \\
\text{subject to} & M\dot{v} + h = \tau \\
& \tau^{\min} \leq \tau \leq \tau^{\max}\n\end{array} \tag{10}
$$

Take the ID control LSP

$$
\begin{array}{ll}\n\text{minimize} & ||\dot{v} - \dot{v}^d||^2 \\
\text{subject to} & M\dot{v} + h = \tau\n\end{array} \tag{9}
$$

LSPs allow for linear inequality constraints \rightarrow we can add torque limits:

minimize
$$
||\vec{v} - \vec{v}^d||^2
$$

\nsubject to $M\vec{v} + h = \tau$
\n
$$
\tau^{min} \leq \tau \leq \tau^{max}
$$
\n(10)

Main advantage of optimization: inequality constraints.

In electric motors current *i* is proportional to torque τ :

$$
i = k_{\tau} \tau \tag{11}
$$

In electric motors current *i* is proportional to torque τ :

$$
i = k_{\tau} \tau \tag{11}
$$

Add current limits:

minimize
$$
||\vec{v} - \vec{v}^{d}||^{2}
$$

\nsubject to $M\vec{v} + h = \tau$
\n
$$
\tau^{min} \leq \tau \leq \tau^{max}
$$
\n
$$
i^{min} \leq k_{\tau}\tau \leq i^{max}
$$
\n(12)

Assuming constant accelerations \dot{v} during time step Δt :

$$
v(t + \Delta t) = v(t) + \Delta t \dot{v}
$$
 (13)

Assuming constant accelerations \dot{v} during time step Δt :

$$
v(t + \Delta t) = v(t) + \Delta t \dot{v}
$$
 (13)

Add joint velocity limits:

$$
\begin{array}{ll}\n\text{minimize} & ||\dot{v} - \dot{v}^d||^2 \\
\text{subject to} & M\dot{v} + h = \tau \\
& \tau^{\min} \le \tau \le \tau^{\max} \\
& i^{\min} \le k_\tau \tau \le i^{\max} \\
& v^{\min} \le v + \Delta t \dot{v} \le v^{\max}\n\end{array} \tag{14}
$$

Could use same trick for position limits:

$$
q(t + \Delta t) = q(t) + \Delta t \, v(t) + \frac{1}{2} \, \Delta t^2 \dot{v} \tag{15}
$$

Could use same trick for position limits:

$$
q(t + \Delta t) = q(t) + \Delta t \, v(t) + \frac{1}{2} \, \Delta t^2 \dot{v} \tag{15}
$$

However, this can result in high accelerations, typically incompatible with torque/current limits \rightarrow unfeasible LSP.

Could use same trick for position limits:

$$
q(t + \Delta t) = q(t) + \Delta t \, v(t) + \frac{1}{2} \, \Delta t^2 \dot{v} \tag{15}
$$

However, this can result in high accelerations, typically incompatible with torque/current limits \rightarrow unfeasible LSP.

Better approaches exist [\[1,](#page-48-0) [3,](#page-48-1) [2\]](#page-48-2), but we don't discuss them here.

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$

Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$

Inverse-Dynamics Control:

Other version:

 $PD +$ gravity compensation:

$$
\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h
$$

$$
\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h
$$

$$
\tau = -K_d \dot{e} - K_p e + g(q)
$$

Inverse-Dynamics Control:

Other version:

PID:

 $PD +$ gravity compensation:

$$
\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h
$$

$$
\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h
$$

$$
\tau = -K_d \dot{e} - K_p e + g(q)
$$

$$
\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds
$$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int^t$ ID Control as LSP:

> minimize $||\vec{v} - \vec{v}^d||^2$ τ,v˙ subject to $M\dot{v} + h = \tau$

l *K_ie*(*s*)ds
⁰

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int^t$ l *K_ie*(*s*)ds
⁰ ID Control as LSP:

minimize $||\vec{v} - \vec{v}^d||^2$ τ,v˙ subject to $M\dot{v} + h = \tau$ $\tau^{\textit{min}} \leq \tau \leq \tau^{\textit{max}}$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int^t$ l *K_ie*(*s*)ds
⁰ ID Control as LSP: minimize $||\vec{v} - \vec{v}^d||^2$ τ,v˙

> subject to $M\dot{v} + h = \tau$ $\tau^{\textit{min}} \leq \tau \leq \tau^{\textit{max}}$ $i^{min} \leq k_{\tau} \tau \leq i^{max}$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int^t$ l *K_ie*(*s*)ds
⁰ ID Control as LSP: minimize $||\vec{v} - \vec{v}^d||^2$ τ,v˙

subject to $M\dot{v} + h = \tau$ $\tau^{\textit{min}} \leq \tau \leq \tau^{\textit{max}}$ $i^{min} \leq k_{\tau} \tau \leq i^{max}$ $v^{min} \le v + \Delta t \dot{v} \le v^{max}$

References i

量

W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter. Extending iTaSC to support inequality constraints and non-instantaneous task specification.

In IEEE International Conference on Robotics and Automation (ICRA), 2009.

A. Del Prete.

Joint Position and Velocity Bounds in Discrete-Time Acceleration / Torque Control of Robot Manipulators. IEEE Robotics and Automation Letters, 3(1), 2018.

S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and M. Da Silva Simoes.

Motion safety and constraints compatibility for multibody robots.

Autonomous Robots, 32(3):333–349, 2012.