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Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem
Find τ(t) so that q(t) follows reference qr (t).

Assumption
We know dynamics and can measure q and v .

Solution
Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r )− Kp(q − qr ) (2)

where Kp,Kd are diagonal positive-definite gain matrices.
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Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r )︸ ︷︷ ︸
ė

−Kp (q − qr )︸ ︷︷ ︸
e

ë = −Kd ė − Kpe[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)
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ë

]
︸︷︷︸
ẋ
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ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė
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ë = −Kd ė − Kpe[
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ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

3



Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r )︸ ︷︷ ︸
ė
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Many names for the same approach

This control law:

τ = M(v̇ r − Kd ė − Kpe) + h (3)

is known as:

• Inverse-Dynamics (ID) Control: because based on inverse dynamics

computation.

• Computed Torque: because it computes torques needed to get

desired accelerations.

• Feedback Linearization (from control theory): because it uses state

feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

τ = Mv̇ r − Kd ė − Kpe + h (4)
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Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so q → qr ).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.
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Inverse Dynamics Control as

Optimization Problem



Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:

(τ∗, v̇∗) = argmin
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(7)

with v̇d = v̇ r − Kd ė − Kpe

, is exactly the ID control law:

τ∗ = Mv̇d + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to

solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).
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Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• 2-norm of linear cost function (||Ax − b||2)

LSPs are subclass of convex Quadratic Programs (QPs), which have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• convex quadratic cost function (x>Hx + h>x , with H ≥ 0)

LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares

→ We can solve LSP/QPs inside 1 kHz control loops!
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Adding Torque Limits to ID Control

Take the ID control LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(9)

LSPs allow for linear inequality constraints → we can add torque limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

(10)

Main advantage of optimization: inequality constraints.
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Adding Current Limits for Electric Motors

In electric motors current i is proportional to torque τ :

i = kττ (11)

Add current limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

(12)
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Adding Joint Velocity Limits

Assuming constant accelerations v̇ during time step ∆t:

v(t + ∆t) = v(t) + ∆t v̇ (13)

Add joint velocity limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

(14)
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Adding Joint Position Limits

Could use same trick for position limits:

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2v̇ (15)

However, this can result in high accelerations, typically incompatible with

torque/current limits → unfeasible LSP.

Better approaches exist [1, 3, 2], but we don’t discuss them here.
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Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax
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