Joint-Space Control

Optimization-based Control of Legged Robots

Andrea Del Prete

University of Trento, 2023



Table of contents

1. Joint-Space Inverse Dynamics Control

2. Inverse Dynamics Control as Optimization Problem



Joint-Space Inverse Dynamics
Control



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(q,v) =7 (1)

Problem
Find 7(t) so that g(t) follows reference q"(t).



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(g,v) =T (1)
Problem
Find 7(t) so that g(t) follows reference q"(t).

Assumption
We know dynamics and can measure g and v.



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(g,v) =T (1)
Problem
Find 7(t) so that g(t) follows reference q"(t).

Assumption
We know dynamics and can measure g and v.

Solution
Set 7 = M(q)v¥ + h(q, v) — closed-loop dynamics is v = v¢.



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(g,v) =T (1)
Problem
Find 7(t) so that g(t) follows reference q"(t).

Assumption
We know dynamics and can measure g and v.

Solution
Set 7 = M(q)v¥ + h(q, v) — closed-loop dynamics is v = v¢.

Select v? so that q(t) follows q"(t):



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(g,v) =T (1)
Problem
Find 7(t) so that g(t) follows reference q"(t).

Assumption
We know dynamics and can measure g and v.

Solution
Set 7 = M(q)v¥ + h(q, v) — closed-loop dynamics is v = v¢.

Select v? so that q(t) follows q"(t):



Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v + h(g,v) =T (1)
Problem
Find 7(t) so that g(t) follows reference q"(t).

Assumption
We know dynamics and can measure g and v.

Solution
Set 7 = M(q)v¥ + h(q, v) — closed-loop dynamics is v = v¢.

Select v? so that q(t) follows q"(t):
vl =V = Kg(v =) = Kp(q = q) (2)

where K,,, K4 are diagonal positive-definite gain matrices.
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Convergence

Show that g(t) converges to q"(t).

Closed-loop dynamics is

v=v"—Ki(v—v")—K,(qg—q")
—— ——
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6= —Kyqé — Kpe
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A is Hurwitz if K, and Ky are diagonal and positive-definite —
lim; oo x(t) =0 — lime oo g(t) = q"(t)



Many names for the same approach

This control law:
T=MWV" — Kyé — Kpe)+h (3)

is known as:

e [nverse-Dynamics (ID) Control: because based on inverse dynamics
computation.

e Computed Torque: because it computes torques needed to get
desired accelerations.

e Feedback Linearization (from control theory): because it uses state
feedback to linearize closed-loop dynamics.



Many names for the same approach

This control law:
T=MWV" — Kyé — Kpe)+h (3)

is known as:

e [nverse-Dynamics (ID) Control: because based on inverse dynamics
computation.

e Computed Torque: because it computes torques needed to get
desired accelerations.

e Feedback Linearization (from control theory): because it uses state
feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

=MV — Kgé— Kye+ h (4)
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Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

T=—Kqé — Kpe+ g(q)
—_——— ~—~ (5)
PD gravity compensation

Another (even simpler) option is PID control:

&
T=—Kyé — Kpe — / Kie(s)ds (6)
0

where integral replaces gravity compensation.
Both control laws are stable and ensure convergence (so g — ¢").

In theory “ID control" outperforms “PD-gravity”, which outperforms
“PID".

In practice the opposite could occur because of model errors.
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Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:
(7*,v*) = argmin |V — v9|[?
™)
subjectto Mv+h=r7
with v = v — K, é — Kye, is exactly the ID control law:

= Mv? + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to
solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).
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Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

e linear equality/inequality constraints (Ax < b, or Ax = b)

e 2-norm of linear cost function (||Ax — b||?)
LSPs are subclass of convex Quadratic Programs (QPs), which have:

e linear equality/inequality constraints (Ax < b, or Ax = b)
e convex quadratic cost function (x " Hx + h' x, with H > 0)
LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares
— We can solve LSP/QPs inside 1 kHz control loops!
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Adding Torque Limits to ID Control

Take the ID control LSP:
minimize ||v — v9||?
T,V (9)

subjectto Mv+h=r
LSPs allow for linear inequality constraints — we can add torque limits:
minimize ||V — v9||?
T,V
subjectto Mv +h=r (10)

Tm/n S T S Tmax

Main advantage of optimization: inequality constraints.
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Adding Current Limits for Electric Motors

In electric motors current i is proportional to torque 7:

i= kT (11)
Add current limits:
minimize ||V — v
subjectto Mv+h=r (12)

Tmln S T S Tmax

,-mm S kTT S I-max



Adding Joint Velocity Limits

Assuming constant accelerations v during time step At:

v(t+ At) = v(t) + At v (13)
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Adding Joint Velocity Limits

Assuming constant accelerations v during time step At:
v(t+ At) = v(t) + At v (13)

Add joint velocity limits:
minimize ||V — v9|[?
TV
subjectto Mv+ h=r
N < o< pmax (14)
imin < o < M

Vmin < v+ Atv < ymax
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Adding Joint Position Limits

Could use same trick for position limits:
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Could use same trick for position limits:
1
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torque/current limits — unfeasible LSP.
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Adding Joint Position Limits

Could use same trick for position limits:
1
q(t + At) :q(t)+Atv(t)+§At2\'/ (15)

However, this can result in high accelerations, typically incompatible with
torque/current limits — unfeasible LSP.

Better approaches exist [1, 3, 2], but we don't discuss them here.
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Inverse-Dynamics Control: T=MW" — Kyé— Kpe) + h
Other version: T=Mv —Kyé— Kye+h
PD + gravity compensation: T=—Kysé — Kye +g(q)

t
PID: T=—Kyé — Kpe — / Kie(s)ds
0

ID Control as LSP:

minimize ||v — v?||?
T,V

subjectto Mv+h=r71
7_min < 7 < pmax

I-mm S k-rT S I'ITIQX

12



Inverse-Dynamics Control: T=MW" — Kyé— Kpe) + h
Other version: T=Mv —Kyé— Kye+h
PD + gravity compensation: T=—Kysé — Kye +g(q)

t
PID: T=—Kyé — Kpe — / Kie(s)ds
0

ID Control as LSP:
minimize ||v — v?||?
v
subjectto Mv+h=r71
T <75 < 7
imin < e < M

Vmin < v+ Aty < ymax
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