Joint-Space Control

Optimization-based Control of Legged Robots

Andrea Del Prete

University of Trento, 2023

- 1. Joint-Space Inverse Dynamics Control
- 2. Inverse Dynamics Control as Optimization Problem

Joint-Space Inverse Dynamics Control

Robot Manipulator

Given (nonlinear) manipulator dynamics:

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Robot Manipulator

Given (nonlinear) manipulator dynamics:

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Assumption We know dynamics and can measure q and v.

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Assumption We know dynamics and can measure q and v.

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Assumption We know dynamics and can measure q and v.

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow \text{closed-loop dynamics is } \dot{v} = \dot{v}^d$.

Select \dot{v}^d so that q(t) follows $q^r(t)$:

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Assumption We know dynamics and can measure q and v.

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow \text{closed-loop dynamics is } \dot{v} = \dot{v}^d$.

Select \dot{v}^d so that q(t) follows $q^r(t)$:

$$\dot{v}^d = \dot{v}^r$$

$$M(q)\dot{v} + h(q, v) = \tau \tag{1}$$

Problem Find $\tau(t)$ so that q(t) follows reference $q^{r}(t)$.

Assumption We know dynamics and can measure q and v.

Solution

Set $\tau = M(q)\dot{v}^d + h(q, v) \rightarrow$ closed-loop dynamics is $\dot{v} = \dot{v}^d$.

Select \dot{v}^d so that q(t) follows $q^r(t)$:

$$\dot{v}^d = \dot{v}^r - \mathcal{K}_d(v - v^r) - \mathcal{K}_p(q - q^r) \tag{2}$$

where K_p, K_d are diagonal positive-definite gain matrices.

Closed-loop dynamics is

$$\dot{v} = \dot{v}^r - \mathcal{K}_d \underbrace{(v - v^r)}_{\dot{e}} - \mathcal{K}_p \underbrace{(q - q^r)}_{e}$$

Closed-loop dynamics is

$$\dot{v} = \dot{v}^r - K_d \underbrace{(v - v^r)}_{\dot{e}} - K_p \underbrace{(q - q^r)}_{e}$$
$$\ddot{e} = -K_d \dot{e} - K_p e$$

Closed-loop dynamics is

Closed-loop dynamics is

A is Hurwitz if K_p and K_d are diagonal and positive-definite $\rightarrow \lim_{t\to\infty} x(t) = 0 \rightarrow \lim_{t\to\infty} q(t) = q^r(t)$

This control law:

$$\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h \tag{3}$$

is known as:

- Inverse-Dynamics (ID) Control: because based on inverse dynamics computation.
- Computed Torque: because it computes torques needed to get desired accelerations.
- Feedback Linearization (from control theory): because it uses state feedback to linearize closed-loop dynamics.

This control law:

$$\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h \tag{3}$$

is known as:

- Inverse-Dynamics (ID) Control: because based on inverse dynamics computation.
- Computed Torque: because it computes torques needed to get desired accelerations.
- Feedback Linearization (from control theory): because it uses state feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

$$\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h \tag{4}$$

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

(5)

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

Another (even simpler) option is PID control:

$$\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$$
(6)

where integral replaces gravity compensation.

(5)

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

Another (even simpler) option is PID control:

$$\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$$
(6)

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q \rightarrow q^r$).

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

Another (even simpler) option is PID control:

$$\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$$
(6)

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q \rightarrow q^r$). In theory "ID control" outperforms "PD+gravity", which outperforms "PID".

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

Another (even simpler) option is PID control:

$$\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$$
(6)

where integral replaces gravity compensation.

Both control laws are stable and ensure convergence (so $q
ightarrow q^r$).

In theory "ID control" outperforms "PD+gravity", which outperforms "PID".

In practice the opposite could occur because of model errors.

Inverse Dynamics Control as Optimization Problem

$$\begin{aligned} (\tau^*, \dot{v}^*) &= \underset{\tau, \dot{v}}{\operatorname{argmin}} & ||\dot{v} - \dot{v}^d||^2 \\ &\text{subject to} & M\dot{v} + h = \tau \end{aligned}$$
 (7)

with $\dot{v}^d = \dot{v}^r - K_d \dot{e} - K_p e$

$$\begin{aligned} (\tau^*, \dot{v}^*) &= \underset{\tau, \dot{v}}{\operatorname{argmin}} & ||\dot{v} - \dot{v}^d||^2 \\ & \text{subject to} & M\dot{v} + h = \tau \end{aligned}$$
 (7)

with $\dot{v}^d = \dot{v}^r - K_d \dot{e} - K_p e$, is exactly the ID control law:

$$\tau^* = M\dot{v}^d + h,\tag{8}$$

$$\begin{aligned} (\tau^*, \dot{v}^*) &= \underset{\tau, \dot{v}}{\operatorname{argmin}} & ||\dot{v} - \dot{v}^d||^2 \\ & \text{subject to} & M\dot{v} + h = \tau \end{aligned}$$
 (7)

with $\dot{v}^d = \dot{v}^r - K_d \dot{e} - K_p e$, is exactly the ID control law:

$$\tau^* = M\dot{v}^d + h,\tag{8}$$

No advantage in solving (7) to compute (8), but (7) is starting point to solve more complex problems.

$$\begin{aligned} (\tau^*, \dot{v}^*) &= \underset{\tau, \dot{v}}{\operatorname{argmin}} & ||\dot{v} - \dot{v}^d||^2 \\ & \text{subject to} & M\dot{v} + h = \tau \end{aligned}$$
 (7)

with $\dot{v}^d = \dot{v}^r - K_d \dot{e} - K_p e$, is exactly the ID control law:

$$\tau^* = M\dot{v}^d + h,\tag{8}$$

No advantage in solving (7) to compute (8), but (7) is starting point to solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- 2-norm of linear cost function $(||Ax b||^2)$

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- convex quadratic cost function $(x^{\top}Hx + h^{\top}x, \text{ with } H \ge 0)$

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- convex quadratic cost function $(x^{\top}Hx + h^{\top}x, \text{ with } H \ge 0)$

LSPs and convex QPs can be solved extremely fast with off-the-shelf softwares

- linear equality/inequality constraints $(Ax \le b, \text{ or } Ax = b)$
- 2-norm of linear cost function $(||Ax b||^2)$

LSPs are subclass of convex Quadratic Programs (QPs), which have:

- linear equality/inequality constraints ($Ax \leq b$, or Ax = b)
- convex quadratic cost function $(x^{\top}Hx + h^{\top}x, \text{ with } H \ge 0)$

LSPs and convex QPs can be solved extremely fast with off-the-shelf softwares

 \rightarrow We can solve LSP/QPs inside 1 kHz control loops!

Take the ID control LSP:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \underset{\tau,\dot{v}}{\text{subject to}} & M\dot{v} + h = \tau \end{array}$$
(9)

Take the ID control LSP:

$$\begin{array}{l} \underset{\tau,\dot{v}}{\text{minimize}} \quad ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} \quad M\dot{v} + h = \tau \end{array} \tag{9}$$

LSPs allow for linear inequality constraints \rightarrow we can add torque limits:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} & M\dot{v} + h = \tau \\ & \tau^{\min} \leq \tau \leq \tau^{\max} \end{array}$$
(10)

Take the ID control LSP:

$$\begin{array}{l} \underset{\tau,\dot{v}}{\text{minimize}} \quad ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} \quad M\dot{v} + h = \tau \end{array} \tag{9}$$

LSPs allow for linear inequality constraints \rightarrow we can add torque limits:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} & M\dot{v} + h = \tau \\ & \tau^{\min} \leq \tau \leq \tau^{\max} \end{array}$$
(10)

Main advantage of optimization: inequality constraints.

In electric motors current *i* is proportional to torque τ :

$$i = k_{\tau}\tau \tag{11}$$

In electric motors current *i* is proportional to torque τ :

$$i = k_{\tau}\tau \tag{11}$$

Add current limits:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} & M\dot{v} + h = \tau \\ & \tau^{\min} \leq \tau \leq \tau^{\max} \\ & i^{\min} \leq k_{\tau}\tau \leq i^{\max} \end{array}$$
(12)

Assuming constant accelerations \dot{v} during time step Δt :

$$v(t + \Delta t) = v(t) + \Delta t \dot{v}$$
(13)

Assuming constant accelerations \dot{v} during time step Δt :

$$v(t + \Delta t) = v(t) + \Delta t \dot{v}$$
(13)

Add joint velocity limits:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} & M\dot{v} + h = \tau \\ & \tau^{\min} \leq \tau \leq \tau^{\max} \\ & i^{\min} \leq k_{\tau}\tau \leq i^{\max} \\ & v^{\min} \leq v + \Delta t\dot{v} \leq v^{\max} \end{array}$$
(14)

Could use same trick for position limits:

$$q(t + \Delta t) = q(t) + \Delta t v(t) + \frac{1}{2} \Delta t^2 \dot{v}$$
(15)

Could use same trick for position limits:

$$q(t + \Delta t) = q(t) + \Delta t v(t) + \frac{1}{2} \Delta t^2 \dot{v}$$
(15)

However, this can result in high accelerations, typically incompatible with torque/current limits \rightarrow unfeasible LSP.

Could use same trick for position limits:

$$q(t + \Delta t) = q(t) + \Delta t v(t) + \frac{1}{2} \Delta t^2 \dot{v}$$
(15)

However, this can result in high accelerations, typically incompatible with torque/current limits \rightarrow unfeasible LSP.

Better approaches exist [1, 3, 2], but we don't discuss them here.

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d\dot{e} - K_p e + h$

Inverse-Dynamics Control:

Other version:

PD + gravity compensation:

$$\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$$

$$\tau = M \dot{v}^r - K_d \dot{e} - K_p e + h$$

$$\tau = -K_d \dot{e} - K_p e + g(q)$$

Inverse-Dynamics Control:

Other version:

PID:

 PD + gravity compensation:

$$\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$$

$$\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$$

$$\tau = -K_d \dot{e} - K_p e + g(q)$$

$$\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$ ID Control as LSP:

 $\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^{2} \\ \text{subject to} & M\dot{v} + h = \tau \end{array}$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M\dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$ ID Control as LSP:

 $\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||\dot{v} - \dot{v}^{d}||^2\\ \text{subject to} & M\dot{v} + h = \tau\\ & \tau^{\min} \leq \tau \leq \tau^{\max} \end{array}$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M \dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$ ID Control as LSP: minimize $||\dot{v} - \dot{v}^d||^2$

> subject to $M\dot{v} + h = \tau$ $\tau^{min} \le \tau \le \tau^{max}$ $i^{min} \le k_{\tau}\tau \le i^{max}$

Inverse-Dynamics Control: $\tau = M(\dot{v}^r - K_d \dot{e} - K_p e) + h$ Other version: $\tau = M \dot{v}^r - K_d \dot{e} - K_p e + h$ PD + gravity compensation: $\tau = -K_d \dot{e} - K_p e + g(q)$ PID: $\tau = -K_d \dot{e} - K_p e - \int_0^t K_i e(s) ds$ ID Control as LSP: minimize $||\dot{v} - \dot{v}^d||^2$

 $\begin{array}{ll} \text{subject to} & M\dot{v}+h=\tau\\ & \tau^{\min}\leq\tau\leq\tau^{\max}\\ & i^{\min}\leq k_{\tau}\tau\leq i^{\max}\\ & v^{\min}\leq v+\Delta t\dot{v}\leq v^{\max} \end{array}$

References i

W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter. **Extending iTaSC to support inequality constraints and non-instantaneous task specification.**

In IEEE International Conference on Robotics and Automation (ICRA), 2009.

A. Del Prete.

Joint Position and Velocity Bounds in Discrete-Time Acceleration / Torque Control of Robot Manipulators. *IEEE Robotics and Automation Letters*, 3(1), 2018.

S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and M. Da Silva Simoes.

Motion safety and constraints compatibility for multibody robots.

Autonomous Robots, 32(3):333–349, 2012.