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From Joint Space to Task Space

Control



Limits of Joint-Space Control

Joint-space control needs reference joint trajectory qr (t).

What if we have reference trajectory x r (t) for end-effector?
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Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T ],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T ],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).
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Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r )− Kp(x − x r ) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)
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Option 1 VS Option 2

To summarize, both options compute joint torques as:

τ = Mv̇d + h (6)

Option 1 computes v̇d as:

v̇d = v̇ r − PD(q − FG †(x r ))

(7)

FG is “inverted” at configuration

level.

Option 2 computes v̇d as:

v̇d = J†(ẍ r − PD(x − x r )− J̇v)

(8)

FG is “inverted” at acceleration

level.
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Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller
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End-Effector Control as LSP

End-effector control law (Option 2):

τ = Mv̇d + h

v̇d = J†(ẍd − J̇v)

ẍd = ẍ r − PD(x − x r )

(9)

can be computed as:

minimize
τ,v̇

||Jv̇ + J̇v − ẍd ||2

subject to Mv̇ + h = τ
(10)
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Task Models



Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.
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Task-Function Types

IDEA
Given e(x , u, t), find affine function of v̇ and u to minimize.

Three kinds of task functions:

• Affine functions of u: e(u, t) = Auu − a(t)

• Nonlinear functions of v : e(v , t) = y(v)− y∗(t)

• Nonlinear functions of q: e(q, t) = y(q)− y∗(t)

Issue
q and v are not variables in Inverse Dynamics LSP.

Solution
Impose dynamics of e(x , t) (e.g., ė = ...)

which should be affine function of v̇

such that limt→∞ e(x , t) = 0
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Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.
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v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av
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Configuration Task-Function
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Jv̇ + J̇v − ÿ∗ = −Ke − Dė
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Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12
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Under-actuation and contacts



TSID: Fully-Actuated Case

Find τ that minimizes task function:

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −I

]
z = −h

(13)
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Under-actuated systems

Examples:

• legged robots

• wheeled robots

• flying robots

• under-water robots

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h

(14)
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TSID for Robots in Soft Contact

If system in contact → account for contact forces f .

If contacts are soft, use estimated forces f̂ :

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h + J> f̂

(15)
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TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

c(q) = const ⇐⇒ Contact points do not move

Jv = 0 ⇐⇒ Contact point velocities are null

Jv̇ + J̇v = 0 ⇐⇒ Contact point accelerations are null

Introduce forces and constraints:

minimize
z=(v̇ ,f ,τ)

||Az − a||2

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
(16)
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Inequality Constraints

Benefit of optimization: inequality constraints.

Any inequality affine in z = (τ, f , v̇):

• joint torque bounds: τmin ≤ τ ≤ τmax

• (linearized) force friction cones: Bf ≤ 0

• joint bounds: v̇min ≤ v̇ ≤ v̇max

• collision avoidance (more complicated)
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Multi-Task Control



Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform

:

• 7-DoF manipulator that controls end-effector placement (6 DoFs)

has 1 DoF of redundancy

• 18-DoF biped that controls placement of two feet (12 DoFs) has 6

DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?
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Weighted Multi-Objective Optimization

N tasks, each defined by task function

gi (z) = ||Aiz − ai ||2 i = 1 . . .N

Simplest strategy: sum functions using user-defined weights wi :

minimize
z=(v̇ ,f ,τ)

N∑
i=1

wigi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights → too large/small weights lead to numerical

issues.
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Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.
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Computational Aspects



Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC).

→
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?
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Reformulating Optimization Problem

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure: J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha


Identity matrix is easy to invert → Easy to express τ as affine function of

other variables. v̇f
τ


︸︷︷︸

z

=

 I 0

0 I

Ma −J>a


︸ ︷︷ ︸

D

[
v̇

f

]
︸︷︷︸

z̄

+

 0

0

ha


︸ ︷︷ ︸

d
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Reformulating Optimization Problem

Original problem:

minimize
z

||Az − a||2

subject to Bz ≤ b J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha



Use z = Dz̄ + d to reformulate as [2]:

minimize
z̄

||ADz̄ + Ad − a||2

subject to BDz̄ ≤ b − Bd[
J 0

Mu −J>u

][
v̇

f

]
=

[
−J̇v
−hu

]

Removed nva variables and nva equality constraints!
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Reformulating Optimization Problem: Can We Do Better?

Can improve more?

Yes:

• for floating-base, remove first 6 variables of v̇ exploiting structure of

first 6 columns of Mu

• remove (either all [3, 4] or some [1]) force variables by projecting

dynamics in null space of J

BUT these tricks either limit expressiveness, or lead to small

improvements (while making software more complex).

My opinion: not worth it!
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From Euclidian Spaces to Lie Groups

So far y(x , u) ∈ Rm.

What if y(x , u) ∈ SE (3)? (very common in practice)

SOLUTION Represent SE(3) elements using homogeneous matrices

y ∈ R4×4 and redefine error function:

e(q, t) = log(y∗(t)−1y(q)),

where log , inverse operation of matrix exponential (i.e. exponential

map): transforms displacement into twist.
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