# **Task-Space Inverse Dynamics**

Optimization-based Robot Control

Andrea Del Prete

University of Trento, 2023

- 1. From Joint Space to Task Space Control
- 2. Task Models
- 3. Under-actuation and contacts
- 4. Multi-Task Control
- 5. Computational Aspects

# From Joint Space to Task Space Control

Joint-space control needs reference joint trajectory  $q^{r}(t)$ .

Joint-space control needs reference joint trajectory  $q^{r}(t)$ . What if we have reference trajectory  $x^{r}(t)$  for end-effector?

Compute joint trajectory  $q^{r}(t)$  corresponding to  $x^{r}(t)$ , then apply joint-space control:

Compute joint trajectory  $q^{r}(t)$  corresponding to  $x^{r}(t)$ , then apply joint-space control:

Find  $q^r(t)$  such that  $FG(q^r(t)) = x^r(t)$   $\forall t \in [0, T]$ ,

Compute joint trajectory  $q^{r}(t)$  corresponding to  $x^{r}(t)$ , then apply joint-space control:

Find 
$$q^{r}(t)$$
 such that  $FG(q^{r}(t)) = x^{r}(t)$   $\forall t \in [0, T],$   
 $\rightarrow q^{r}(t) = FG^{\dagger}(x^{r}(t))$   $\forall t \in [0, T],$ 
(1)

where:

- $FG(.) \triangleq$  forward geometry function of end-effector
- $FG^{\dagger}(.)$  is such that  $FG(FG^{\dagger}(x)) = x, \forall x$

Compute joint trajectory  $q^{r}(t)$  corresponding to  $x^{r}(t)$ , then apply joint-space control:

Find 
$$q^{r}(t)$$
 such that  $FG(q^{r}(t)) = x^{r}(t)$   $\forall t \in [0, T],$   
 $\rightarrow q^{r}(t) = FG^{\dagger}(x^{r}(t))$   $\forall t \in [0, T],$  (1)

where:

- $FG(.) \triangleq$  forward geometry function of end-effector
- $FG^{\dagger}(.)$  is such that  $FG(FG^{\dagger}(x)) = x, \forall x$

#### **ISSUES**

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).

Compute joint trajectory  $q^{r}(t)$  corresponding to  $x^{r}(t)$ , then apply joint-space control:

Find 
$$q^{r}(t)$$
 such that  $FG(q^{r}(t)) = x^{r}(t)$   $\forall t \in [0, T],$   
 $\rightarrow q^{r}(t) = FG^{\dagger}(x^{r}(t))$   $\forall t \in [0, T],$  (1)

where:

- $FG(.) \triangleq$  forward geometry function of end-effector
- $FG^{\dagger}(.)$  is such that  $FG(FG^{\dagger}(x)) = x, \forall x$

#### **ISSUES**

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).

Tracking  $q^{r}(t)$  is sufficient but not necessary to track  $x^{r}(t)$ : controller rejects also perturbations affecting q without affecting FG(q).

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Differenciate relationship between q and x:

x = FG(q)

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Differenciate relationship between q and x:

$$x = FG(q)$$
  
$$\dot{x} = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{I} \frac{dq}{dt} = Jv$$

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\dot{x} = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$

$$\ddot{x} = J\dot{v} + \dot{J}v$$
(3)

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\dot{x} = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$

$$\ddot{x} = J\dot{v} + \dot{J}v$$
(3)

Desired accelerations should be:

$$\dot{v}^d = J^{\dagger}(\ddot{x}^d - \dot{J}v) \tag{4}$$

Feedback directly end-effector configuration:

$$\ddot{x}^{d} = \ddot{x}^{r} - K_{d}(\dot{x} - \dot{x}^{r}) - K_{p}(x - x^{r})$$
(2)

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\dot{x} = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$

$$\ddot{x} = J\dot{v} + \dot{J}v$$
(3)

Desired accelerations should be:

$$\dot{v}^d = J^{\dagger}(\ddot{x}^d - \dot{J}v) \tag{4}$$

Finally compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{5}$$

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

Option 1 computes  $\dot{v}^d$  as:

$$\dot{v}^{d} = \dot{v}^{r} - PD(q - FG^{\dagger}(x^{r}))$$
<sup>(7)</sup>

FG is "inverted" at configuration level.

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

Option 1 computes  $\dot{v}^d$  as:

level.

Option 2 computes  $\dot{v}^d$  as:

 $\dot{v}^{d} = \dot{v}^{r} - PD(q - FG^{\dagger}(x^{r}))$ (7) *FG* is "inverted" at configuration  $\dot{v}^d = J^{\dagger}(\ddot{x}^r - PD(x - x^r) - \dot{J}v)$ (8)

FG is "inverted" at acceleration level.

## **Option 1 VS Option 2**

+ Gains defined in Cartesian space

- + Gains defined in Cartesian space
- + No pre-computations

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory
- More complex controller

End-effector control law (Option 2):

$$\tau = M\dot{v}^{d} + h$$
  

$$\dot{v}^{d} = J^{\dagger}(\ddot{x}^{d} - \dot{J}v) \qquad (9)$$
  

$$\ddot{x}^{d} = \ddot{x}^{r} - PD(x - x^{r})$$

End-effector control law (Option 2):

$$\tau = M\dot{v}^{d} + h$$
  

$$\dot{v}^{d} = J^{\dagger}(\ddot{x}^{d} - \dot{J}v) \qquad (9)$$
  

$$\ddot{x}^{d} = \ddot{x}^{r} - PD(x - x^{r})$$

can be computed as:

$$\begin{array}{ll} \underset{\tau,\dot{v}}{\text{minimize}} & ||J\dot{v}+\dot{J}v-\ddot{x}^{d}||^{2} \\ \text{subject to} & M\dot{v}+h=\tau \end{array}$$
(10)

**Task Models** 

Task = control objective.

Task = control objective.

Describe tasks as functions *e* to minimize (as in optimal control).

Task = control objective.

Describe tasks as functions *e* to minimize (as in optimal control).

Assume *e* measures error between real and reference output  $y \in \mathbb{R}^m$ :

$$\underbrace{e(x, u, t)}_{\text{error}} = \underbrace{y(x, u)}_{\text{real}} - \underbrace{y^*(t)}_{\text{reference}}$$

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume *e* measures error between real and reference output  $y \in \mathbb{R}^m$ :

$$\underbrace{e(x, u, t)}_{\text{error}} = \underbrace{y(x, u)}_{\text{real}} - \underbrace{y^*(t)}_{\text{reference}}$$

#### N.B.

Here: *e* depends on instantaneous state-control value. In optimal control: *e* depends on state-control trajectory.

Given e(x, u, t), find affine function of  $\dot{v}$  and u to minimize.

Given e(x, u, t), find affine function of  $\dot{v}$  and u to minimize.

Three kinds of task functions:

- Affine functions of u:  $e(u, t) = A_u u a(t)$
- Nonlinear functions of v:  $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q:  $e(q, t) = y(q) y^*(t)$

Given e(x, u, t), find affine function of  $\dot{v}$  and u to minimize.

Three kinds of task functions:

- Affine functions of u:  $e(u, t) = A_u u a(t)$
- Nonlinear functions of v:  $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q:  $e(q, t) = y(q) y^*(t)$

#### Issue

q and v are not variables in Inverse Dynamics LSP.

Given e(x, u, t), find affine function of  $\dot{v}$  and u to minimize.

Three kinds of task functions:

- Affine functions of u:  $e(u, t) = A_u u a(t)$
- Nonlinear functions of v:  $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q:  $e(q, t) = y(q) y^*(t)$

#### Issue

q and v are not variables in Inverse Dynamics LSP.

#### Solution

Impose dynamics of e(x, t) (e.g.,  $\dot{e} = ...$ ) which should be affine function of  $\dot{v}$ such that  $\lim_{t\to\infty} e(x, t) = 0$
Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$
 $\frac{\partial y}{\partial v}$ 
 $\dot{v} - \dot{y}^* = -Ke$ 
Jacobian

Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Impose first-order linear dynamic:

 $\dot{e} = -Ke$   $\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$   $\underbrace{J}_{\dot{v}} \dot{v} = \underbrace{\dot{y}^* - Ke}_{\dot{v}}$ (11)

Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Impose first-order linear dynamic:

 $\dot{e} = -Ke$   $\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$   $\underbrace{J}_{A_v} \dot{v} = \underbrace{\dot{y}^* - Ke}_{a}$ (11)

We got affine function of  $\dot{v}$ .

Consider task function:  $e(v, t) = y(v) - y^*(t)$ .

Impose first-order linear dynamic:

 $\dot{e} = -Ke$   $\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$   $\underbrace{J}_{A_v} \dot{v} = \underbrace{\dot{y}^* - Ke}_{a}$ (11)

We got affine function of  $\dot{v}$ .

#### N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$
  
 $J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$ 

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v} \dot{v} = \underbrace{\ddot{y}^* - \dot{J}v - Ke - D\dot{e}}_{a}$$
(12)

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + J\dot{v} - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v} \dot{v} = \underbrace{\ddot{y}^* - J\dot{v} - Ke - D\dot{e}}_{a}$$
(12)

We got affine function of  $\dot{v}$ .

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v} \dot{v} = \underbrace{\ddot{y}^* - \dot{J}v - Ke - D\dot{e}}_{a}$$
(12)

We got affine function of  $\dot{v}$ .

N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

Functions of  $x \rightarrow$  nonlinear, but cannot be directly imposed.

Functions of  $x \rightarrow$  nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

Functions of  $x \rightarrow$  nonlinear, but cannot be directly imposed.

- For functions of v impose first derivative.
- For functions of *q* impose second derivative.

Functions of  $x \rightarrow$  nonlinear, but cannot be directly imposed.

- For functions of v impose first derivative.
- For functions of q impose second derivative.

End up with affine function of  $\dot{v}$  and u:

$$g(z) \triangleq \underbrace{\begin{bmatrix} A_v & A_u \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} \dot{v} \\ u \end{bmatrix}}_{z} - a$$

## **Under-actuation and contacts**

Find  $\tau$  that minimizes task function:

$$\begin{array}{l} \underset{z=(\dot{v},\tau)}{\text{minimize}} & ||Az-a||^2\\ \text{subject to} & \left[M & -I\right]z=-h \end{array}$$
(13)

### Examples:

- legged robots
- wheeled robots
- flying robots
- under-water robots

### Examples:

- legged robots
- wheeled robots
- flying robots
- under-water robots

$$\underset{z=(\dot{v},\tau)}{\text{minimize}} ||Az - a||^{2}$$

$$\text{subject to} \quad \begin{bmatrix} M & -\mathbf{S}^{\mathsf{T}} \end{bmatrix} z = -h$$

$$(14)$$

If system in contact  $\rightarrow$  account for contact forces f.

If system in contact  $\rightarrow$  account for contact forces f. If contacts are soft, use estimated forces  $\hat{f}$ :

$$\underset{z=(\dot{v},\tau)}{\text{minimize}} ||Az - a||^{2}$$

$$\text{subject to} \quad \begin{bmatrix} M & -S^{\top} \end{bmatrix} z = -h + J^{\top} \hat{f}$$

$$(15)$$

Rigid contacts constrain motion.

 $c(q) = \text{const} \quad \iff \quad \text{Contact points do not move}$ 

#### Rigid contacts constrain motion.

| c(q) = const              | $\iff$ | Contact points do not move           |
|---------------------------|--------|--------------------------------------|
| Jv = 0                    | $\iff$ | Contact point velocities are null    |
| $J\dot{v} + \dot{J}v = 0$ | $\iff$ | Contact point accelerations are null |

#### Rigid contacts constrain motion.

| c(q) = const              | $\iff$ | Contact points do not move           |
|---------------------------|--------|--------------------------------------|
| Jv = 0                    | $\iff$ | Contact point velocities are null    |
| $J\dot{v} + \dot{J}v = 0$ | $\iff$ | Contact point accelerations are null |

Introduce forces and constraints:

$$\begin{array}{ll} \underset{z=(\dot{v},f,\tau)}{\text{minimize}} & ||Az-a||^2 \\ \text{subject to} & \begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} z = \begin{bmatrix} -j_V \\ -h \end{bmatrix}$$
(16)

Benefit of optimization: inequality constraints.

Benefit of optimization: inequality constraints.

Any inequality affine in  $z = (\tau, f, \dot{v})$ :

- joint torque bounds:  $\tau^{\min} \leq \tau \leq \tau^{\max}$
- (linearized) force friction cones:  $Bf \leq 0$
- joint bounds:  $\dot{v}^{min} \leq \dot{v} \leq \dot{v}^{max}$
- collision avoidance (more complicated)

# **Multi-Task Control**

Complex robots are redundant w.r.t. task they perform

Complex robots are redundant w.r.t. task they perform:

• 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

## Weighted Multi-Objective Optimization

 ${\it N}$  tasks, each defined by task function

$$g_i(z) = ||A_i z - a_i||^2$$
  $i = 1...N$ 

## Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$g_i(z) = ||A_i z - a_i||^2$$
  $i = 1...N$ 

Simplest strategy: sum functions using user-defined weights w<sub>i</sub>:

$$\begin{array}{ll} \underset{z=(\dot{v},f,\tau)}{\text{minimize}} & \sum_{i=1}^{N} w_i g_i(z) \\ \text{subject to} & \begin{bmatrix} J & 0 & 0 \\ M & -J^{\top} & -S^{\top} \end{bmatrix} z = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

## Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$g_i(z) = ||A_i z - a_i||^2$$
  $i = 1...N$ 

Simplest strategy: sum functions using user-defined weights w<sub>i</sub>:

$$\begin{array}{ll} \underset{z=(\dot{v},f,\tau)}{\text{minimize}} & \sum_{i=1}^{N} w_{i}g_{i}(z) \\ \text{subject to} & \begin{bmatrix} J & 0 & 0 \\ M & -J^{\top} & -S^{\top} \end{bmatrix} z = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

PROS Problem remains computationally-efficient LSP.
## Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$g_i(z) = ||A_i z - a_i||^2$$
  $i = 1...N$ 

Simplest strategy: sum functions using user-defined weights w<sub>i</sub>:

$$\begin{array}{ll} \underset{z=(\dot{v},f,\tau)}{\text{minimize}} & \sum_{i=1}^{N} w_{i}g_{i}(z) \\ \text{subject to} & \begin{bmatrix} J & 0 & 0 \\ M & -J^{\top} & -S^{\top} \end{bmatrix} z = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights  $\rightarrow$  too large/small weights lead to numerical issues.

Alternative: order tasks according to priority

Alternative: order tasks according to priority

• task 1 more important than task 2

Alternative: order tasks according to priority

- task 1 more important than task 2
- . . .
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$g_i^* = \underset{z=(\dot{v}, f, \tau)}{\text{minimize}} \quad g_i(z)$$
  
subject to  
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} z = \begin{bmatrix} -J_v \\ -h \end{bmatrix}$$
$$g_j(z) = g_j^* \qquad \forall j < i$$

Alternative: order tasks according to priority

- task 1 more important than task 2
- . . .
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$g_i^* = \underset{z=(\dot{v}, f, \tau)}{\text{minimize}} \quad g_i(z)$$
  
subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} z = \begin{bmatrix} -j_v \\ -h \end{bmatrix}$$
$$g_j(z) = g_j^* \qquad \forall j < i$$

PROS Easier to find priorities than weights.

Alternative: order tasks according to priority

- task 1 more important than task 2
- . . .
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$g_i^* = \underset{z=(\dot{v}, f, \tau)}{\text{minimize}} \quad g_i(z)$$
  
subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} z = \begin{bmatrix} -j_v \\ -h \end{bmatrix}$$
$$g_j(z) = g_j^* \qquad \forall j < i$$

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

# **Computational Aspects**

TSID solves LSP at each loop (embedded optimization, as MPC).

TSID solves LSP at each loop (embedded optimization, as MPC).  $\rightarrow$  Limited computation time (1-10 ms).

TSID solves LSP at each loop (embedded optimization, as MPC).  $\rightarrow$  Limited computation time (1-10 ms).

For  $n_v$  DoFs,  $n_{va}$  motors, and  $n_f$  contact constraints:

- $n_v + n_{va} + n_f$  variables ( $\approx$  70 for humanoid)
- $n_v + n_f$  equality constraints ( $\approx$  40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$  inequality constraints (assuming friction cones approximated with 4-sided pyramids)

TSID solves LSP at each loop (embedded optimization, as MPC).  $\rightarrow$  Limited computation time (1-10 ms).

For  $n_v$  DoFs,  $n_{va}$  motors, and  $n_f$  contact constraints:

- $n_v + n_{va} + n_f$  variables ( $\approx$  70 for humanoid)
- $n_v + n_f$  equality constraints ( $\approx$  40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$  inequality constraints (assuming friction cones approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:  $\mathcal{O}(n^3)$ , with n = number of variables.

TSID solves LSP at each loop (embedded optimization, as MPC).  $\rightarrow$  Limited computation time (1-10 ms).

For  $n_v$  DoFs,  $n_{va}$  motors, and  $n_f$  contact constraints:

- $n_v + n_{va} + n_f$  variables ( $\approx$  70 for humanoid)
- $n_v + n_f$  equality constraints ( $\approx$  40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$  inequality constraints (assuming friction cones approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:  $\mathcal{O}(n^3)$ , with n = number of variables.

#### QUESTIONS

- Can we solve it in 1 ms?
- Can we speed up computation?

IDEA: Exploit problem structure to speed up computation.

IDEA: Exploit problem structure to speed up computation. Equality constraints have special structure:

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -Jv \\ -h_u \\ -h_a \end{bmatrix}$$

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure:

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -\dot{J}v \\ -h_u \\ -h_a \end{bmatrix}$$

Identity matrix is easy to invert  $\rightarrow$  Easy to express  $\tau$  as affine function of other variables.

$$\underbrace{\begin{bmatrix} \dot{\mathbf{v}} \\ f \\ \tau \end{bmatrix}}_{\mathbf{z}} = \underbrace{\begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & I \\ M_a & -J_a^\top \end{bmatrix}}_{\mathbf{D}} \underbrace{\begin{bmatrix} \dot{\mathbf{v}} \\ f \\ f \end{bmatrix}}_{\bar{z}} + \underbrace{\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ h_a \end{bmatrix}}_{d}$$

Original problem:

m

minimize 
$$||Az - a||^2$$
  
subject to  $Bz \le b$   

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -jv \\ -h_u \\ -h_a \end{bmatrix}$$

Original problem:

su

minimize 
$$||Az - a||^2$$
  
subject to  $Bz \le b$   
$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -jv \\ -h_u \\ -h_a \end{bmatrix}$$

Use  $z = D\overline{z} + d$  to reformulate as [2]: minimize  $||AD\overline{z} + Ad - a||^2$ subject to  $BD\overline{z} \leq b - Bd$  $\begin{bmatrix} J & 0 \\ M_{\mu} & -J_{\mu}^{\top} \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} -\dot{j}v \\ -h_{\mu} \end{bmatrix}$ 

Original problem:

su

minimize 
$$||Az - a||^2$$
  
subject to  $Bz \le b$   
$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -jv \\ -h_u \\ -h_a \end{bmatrix}$$

Use  $z = D\overline{z} + d$  to reformulate as [2]: minimize  $||AD\bar{z} + Ad - a||^2$ subject to  $BD\bar{z} < b - Bd$  $\begin{bmatrix} J & 0 \\ M_{\mu} & -J_{\nu}^{\top} \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} -\dot{J}v \\ -h_{\mu} \end{bmatrix}$ 

Removed  $n_{va}$  variables and  $n_{va}$  equality constraints!

Yes:

- for floating-base, remove first 6 variables of  $\dot{v}$  exploiting structure of first 6 columns of  $M_u$
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of J

Yes:

- for floating-base, remove first 6 variables of  $\dot{v}$  exploiting structure of first 6 columns of  $M_u$
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of *J*

BUT these tricks either limit expressiveness, or lead to small improvements (while making software more complex).

Yes:

- for floating-base, remove first 6 variables of  $\dot{v}$  exploiting structure of first 6 columns of  $M_u$
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of *J*

BUT these tricks either limit expressiveness, or lead to small improvements (while making software more complex).

My opinion: not worth it!

So far  $y(x, u) \in \mathbb{R}^m$ .

So far  $y(x, u) \in \mathbb{R}^m$ . What if  $y(x, u) \in SE(3)$ ? (very common in practice) So far  $y(x, u) \in \mathbb{R}^m$ . What if  $y(x, u) \in SE(3)$ ? (very common in practice) SOLUTION Represent SE(3) elements using homogeneous matrices  $y \in \mathbb{R}^{4 \times 4}$  and redefine error function:

$$e(q,t) = \log(y^*(t)^{-1}y(q)),$$

where log  $\triangleq$  inverse operation of matrix exponential (i.e. exponential map): transforms displacement into twist.

#### References i

- A. Del Prete, N. Mansard, F. Nori, G. Metta, and L. Natale.
   Partial Force Control of Constrained Floating-Base Robots.
   In Intelligent Robots and Systems (IROS 2014), IEEE International Conference on, 2014.
- A.
  - A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti.

Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid.

Autonomous Robots, 40(3):473-491, 2016.

M. Mistry, J. Buchli, and S. Schaal. Inverse dynamics control of floating base systems using orthogonal decomposition.

2010 IEEE International Conference on Robotics and Automation, (3):3406–3412, may 2010.



L. Righetti, J. Buchli, M. Mistry, and S. Schaal. Inverse dynamics control of floating-base robots with external constraints: A unified view.

2011 IEEE International Conference on Robotics and Automation, pages 1085–1090, may 2011.