
Task-Space Inverse Dynamics

Optimization-based Robot Control

Andrea Del Prete

University of Trento, 2023

Table of contents

1. From Joint Space to Task Space Control

2. Task Models

3. Under-actuation and contacts

4. Multi-Task Control

5. Computational Aspects

1

From Joint Space to Task Space

Control

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory qr (t).

What if we have reference trajectory x r (t) for end-effector?

2

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory qr (t).

What if we have reference trajectory x r (t) for end-effector?

2

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).

3

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).

3

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).

3

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).

3

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory qr (t) corresponding to x r (t), then apply

joint-space control:

Find qr (t) such that FG (qr (t)) = x r (t) ∀t ∈ [0,T],

→ qr (t) = FG †(x r (t)) ∀t ∈ [0,T],
(1)

where:

• FG (.) , forward geometry function of end-effector

• FG †(.) is such that FG (FG †(x)) = x ,∀x

ISSUES
Problem (1) is challenging (Inverse Geometry, nonconvex problem with

infinitely many solutions).

Tracking qr (t) is sufficient but not necessary to track x r (t): controller

rejects also perturbations affecting q without affecting FG (q).

3

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 2: End-Effector Control

Feedback directly end-effector configuration:

ẍd = ẍ r − Kd(ẋ − ẋ r)− Kp(x − x r) (2)

Differenciate relationship between q and x :

x = FG (q)

ẋ = ẋ =
d

dt
FG (q) =

∂FG

∂q︸ ︷︷ ︸
J

dq

dt
= Jv

ẍ = Jv̇ + J̇v

(3)

Desired accelerations should be:

v̇d = J†(ẍd − J̇v) (4)

Finally compute joint torques as:

τ = Mv̇d + h (5)

4

Option 1 VS Option 2

To summarize, both options compute joint torques as:

τ = Mv̇d + h (6)

Option 1 computes v̇d as:

v̇d = v̇ r − PD(q − FG †(x r))

(7)

FG is “inverted” at configuration

level.

Option 2 computes v̇d as:

v̇d = J†(ẍ r − PD(x − x r)− J̇v)

(8)

FG is “inverted” at acceleration

level.

5

Option 1 VS Option 2

To summarize, both options compute joint torques as:

τ = Mv̇d + h (6)

Option 1 computes v̇d as:

v̇d = v̇ r − PD(q − FG †(x r))

(7)

FG is “inverted” at configuration

level.

Option 2 computes v̇d as:

v̇d = J†(ẍ r − PD(x − x r)− J̇v)

(8)

FG is “inverted” at acceleration

level.

5

Option 1 VS Option 2

To summarize, both options compute joint torques as:

τ = Mv̇d + h (6)

Option 1 computes v̇d as:

v̇d = v̇ r − PD(q − FG †(x r))

(7)

FG is “inverted” at configuration

level.

Option 2 computes v̇d as:

v̇d = J†(ẍ r − PD(x − x r)− J̇v)

(8)

FG is “inverted” at acceleration

level.

5

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller

6

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller

6

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller

6

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller

6

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

+ No pre-computations

+ Online specification of reference trajectory

- More complex controller

6

End-Effector Control as LSP

End-effector control law (Option 2):

τ = Mv̇d + h

v̇d = J†(ẍd − J̇v)

ẍd = ẍ r − PD(x − x r)

(9)

can be computed as:

minimize
τ,v̇

||Jv̇ + J̇v − ẍd ||2

subject to Mv̇ + h = τ
(10)

7

End-Effector Control as LSP

End-effector control law (Option 2):

τ = Mv̇d + h

v̇d = J†(ẍd − J̇v)

ẍd = ẍ r − PD(x − x r)

(9)

can be computed as:

minimize
τ,v̇

||Jv̇ + J̇v − ẍd ||2

subject to Mv̇ + h = τ
(10)

7

Task Models

Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

8

Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

8

Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

8

Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

8

Task-Function Approach

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume e measures error between real and reference output y ∈ Rm:

e(x , u, t)︸ ︷︷ ︸
error

= y(x , u)︸ ︷︷ ︸
real

− y∗(t)︸ ︷︷ ︸
reference

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

8

Task-Function Types

IDEA
Given e(x , u, t), find affine function of v̇ and u to minimize.

Three kinds of task functions:

• Affine functions of u: e(u, t) = Auu − a(t)

• Nonlinear functions of v : e(v , t) = y(v)− y∗(t)

• Nonlinear functions of q: e(q, t) = y(q)− y∗(t)

Issue
q and v are not variables in Inverse Dynamics LSP.

Solution
Impose dynamics of e(x , t) (e.g., ė = ...)

which should be affine function of v̇

such that limt→∞ e(x , t) = 0

9

Task-Function Types

IDEA
Given e(x , u, t), find affine function of v̇ and u to minimize.

Three kinds of task functions:

• Affine functions of u: e(u, t) = Auu − a(t)

• Nonlinear functions of v : e(v , t) = y(v)− y∗(t)

• Nonlinear functions of q: e(q, t) = y(q)− y∗(t)

Issue
q and v are not variables in Inverse Dynamics LSP.

Solution
Impose dynamics of e(x , t) (e.g., ė = ...)

which should be affine function of v̇

such that limt→∞ e(x , t) = 0

9

Task-Function Types

IDEA
Given e(x , u, t), find affine function of v̇ and u to minimize.

Three kinds of task functions:

• Affine functions of u: e(u, t) = Auu − a(t)

• Nonlinear functions of v : e(v , t) = y(v)− y∗(t)

• Nonlinear functions of q: e(q, t) = y(q)− y∗(t)

Issue
q and v are not variables in Inverse Dynamics LSP.

Solution
Impose dynamics of e(x , t) (e.g., ė = ...)

which should be affine function of v̇

such that limt→∞ e(x , t) = 0

9

Task-Function Types

IDEA
Given e(x , u, t), find affine function of v̇ and u to minimize.

Three kinds of task functions:

• Affine functions of u: e(u, t) = Auu − a(t)

• Nonlinear functions of v : e(v , t) = y(v)− y∗(t)

• Nonlinear functions of q: e(q, t) = y(q)− y∗(t)

Issue
q and v are not variables in Inverse Dynamics LSP.

Solution
Impose dynamics of e(x , t) (e.g., ė = ...)

which should be affine function of v̇

such that limt→∞ e(x , t) = 0

9

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke

∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Velocity Task-Function

Consider task function: e(v , t) = y(v)− y∗(t).

Impose first-order linear dynamic:

ė = −Ke
∂y

∂v︸︷︷︸
Jacobian

v̇ − ẏ∗ = −Ke

J︸︷︷︸
Av

v̇ = ẏ∗ − Ke︸ ︷︷ ︸
a

(11)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

10

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Configuration Task-Function

Consider task function: e(q, t) = y(q)− y∗(t).

Impose second-order linear dynamics:

ë = −Ke − Dė

Jv̇ + J̇v − ÿ∗ = −Ke − Dė

J︸︷︷︸
Av

v̇ = ÿ∗ − J̇v − Ke − Dė︸ ︷︷ ︸
a

(12)

We got affine function of v̇ .

N.B.
Could also impose nonlinear dynamics, but linear is ok for most cases.

11

Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12

Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12

Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12

Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12

Task-Function Types: Summary

Functions of u → affine.

Functions of x → nonlinear, but cannot be directly imposed.

• For functions of v impose first derivative.

• For functions of q impose second derivative.

End up with affine function of v̇ and u:

g(z) ,
[
Av Au

]
︸ ︷︷ ︸

A

[
v̇

u

]
︸︷︷︸

z

−a

12

Under-actuation and contacts

TSID: Fully-Actuated Case

Find τ that minimizes task function:

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −I

]
z = −h

(13)

13

Under-actuated systems

Examples:

• legged robots

• wheeled robots

• flying robots

• under-water robots

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h

(14)

14

Under-actuated systems

Examples:

• legged robots

• wheeled robots

• flying robots

• under-water robots

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h

(14)

14

TSID for Robots in Soft Contact

If system in contact → account for contact forces f .

If contacts are soft, use estimated forces f̂ :

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h + J> f̂

(15)

15

TSID for Robots in Soft Contact

If system in contact → account for contact forces f .

If contacts are soft, use estimated forces f̂ :

minimize
z=(v̇ ,τ)

||Az − a||2

subject to
[
M −S>

]
z = −h + J> f̂

(15)

15

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

c(q) = const ⇐⇒ Contact points do not move

Jv = 0 ⇐⇒ Contact point velocities are null

Jv̇ + J̇v = 0 ⇐⇒ Contact point accelerations are null

Introduce forces and constraints:

minimize
z=(v̇ ,f ,τ)

||Az − a||2

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
(16)

16

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

c(q) = const ⇐⇒ Contact points do not move

Jv = 0 ⇐⇒ Contact point velocities are null

Jv̇ + J̇v = 0 ⇐⇒ Contact point accelerations are null

Introduce forces and constraints:

minimize
z=(v̇ ,f ,τ)

||Az − a||2

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
(16)

16

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

c(q) = const ⇐⇒ Contact points do not move

Jv = 0 ⇐⇒ Contact point velocities are null

Jv̇ + J̇v = 0 ⇐⇒ Contact point accelerations are null

Introduce forces and constraints:

minimize
z=(v̇ ,f ,τ)

||Az − a||2

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
(16)

16

Inequality Constraints

Benefit of optimization: inequality constraints.

Any inequality affine in z = (τ, f , v̇):

• joint torque bounds: τmin ≤ τ ≤ τmax

• (linearized) force friction cones: Bf ≤ 0

• joint bounds: v̇min ≤ v̇ ≤ v̇max

• collision avoidance (more complicated)

17

Inequality Constraints

Benefit of optimization: inequality constraints.

Any inequality affine in z = (τ, f , v̇):

• joint torque bounds: τmin ≤ τ ≤ τmax

• (linearized) force friction cones: Bf ≤ 0

• joint bounds: v̇min ≤ v̇ ≤ v̇max

• collision avoidance (more complicated)

17

Multi-Task Control

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform

:

• 7-DoF manipulator that controls end-effector placement (6 DoFs)

has 1 DoF of redundancy

• 18-DoF biped that controls placement of two feet (12 DoFs) has 6

DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

18

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

• 7-DoF manipulator that controls end-effector placement (6 DoFs)

has 1 DoF of redundancy

• 18-DoF biped that controls placement of two feet (12 DoFs) has 6

DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

18

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

• 7-DoF manipulator that controls end-effector placement (6 DoFs)

has 1 DoF of redundancy

• 18-DoF biped that controls placement of two feet (12 DoFs) has 6

DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

18

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

• 7-DoF manipulator that controls end-effector placement (6 DoFs)

has 1 DoF of redundancy

• 18-DoF biped that controls placement of two feet (12 DoFs) has 6

DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

18

Weighted Multi-Objective Optimization

N tasks, each defined by task function

gi (z) = ||Aiz − ai ||2 i = 1 . . .N

Simplest strategy: sum functions using user-defined weights wi :

minimize
z=(v̇ ,f ,τ)

N∑
i=1

wigi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights → too large/small weights lead to numerical

issues.

19

Weighted Multi-Objective Optimization

N tasks, each defined by task function

gi (z) = ||Aiz − ai ||2 i = 1 . . .N

Simplest strategy: sum functions using user-defined weights wi :

minimize
z=(v̇ ,f ,τ)

N∑
i=1

wigi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights → too large/small weights lead to numerical

issues.

19

Weighted Multi-Objective Optimization

N tasks, each defined by task function

gi (z) = ||Aiz − ai ||2 i = 1 . . .N

Simplest strategy: sum functions using user-defined weights wi :

minimize
z=(v̇ ,f ,τ)

N∑
i=1

wigi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights → too large/small weights lead to numerical

issues.

19

Weighted Multi-Objective Optimization

N tasks, each defined by task function

gi (z) = ||Aiz − ai ||2 i = 1 . . .N

Simplest strategy: sum functions using user-defined weights wi :

minimize
z=(v̇ ,f ,τ)

N∑
i=1

wigi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights → too large/small weights lead to numerical

issues.

19

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

20

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

20

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

20

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

20

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

• task 1 more important than task 2

• . . .

• task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

g∗i = minimize
z=(v̇ ,f ,τ)

gi (z)

subject to

[
J 0 0

M −J> −S>

]
z =

[
−J̇v
−h

]
gj(z) = g∗j ∀ j < i

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

20

Computational Aspects

Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC).

→
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?

21

Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC). →
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?

21

Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC). →
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?

21

Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC). →
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?

21

Computational Complexity of TSID

TSID solves LSP at each loop (embedded optimization, as MPC). →
Limited computation time (1-10 ms).

For nv DoFs, nva motors, and nf contact constraints:

• nv + nva + nf variables (≈ 70 for humanoid)

• nv + nf equality constraints (≈ 40 for humanoid)

• nv + nva + 4
3nf inequality constraints (assuming friction cones

approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition:

O(n3), with n = number of variables.

QUESTIONS

• Can we solve it in 1 ms?

• Can we speed up computation?

21

Reformulating Optimization Problem

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure: J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha


Identity matrix is easy to invert → Easy to express τ as affine function of

other variables. v̇f
τ


︸︷︷︸

z

=

 I 0

0 I

Ma −J>a


︸ ︷︷ ︸

D

[
v̇

f

]
︸︷︷︸

z̄

+

 0

0

ha


︸ ︷︷ ︸

d

22

Reformulating Optimization Problem

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure: J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha



Identity matrix is easy to invert → Easy to express τ as affine function of

other variables. v̇f
τ


︸︷︷︸

z

=

 I 0

0 I

Ma −J>a


︸ ︷︷ ︸

D

[
v̇

f

]
︸︷︷︸

z̄

+

 0

0

ha


︸ ︷︷ ︸

d

22

Reformulating Optimization Problem

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure: J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha


Identity matrix is easy to invert → Easy to express τ as affine function of

other variables. v̇f
τ


︸︷︷︸

z

=

 I 0

0 I

Ma −J>a


︸ ︷︷ ︸

D

[
v̇

f

]
︸︷︷︸

z̄

+

 0

0

ha


︸ ︷︷ ︸

d

22

Reformulating Optimization Problem

Original problem:

minimize
z

||Az − a||2

subject to Bz ≤ b J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha



Use z = Dz̄ + d to reformulate as [2]:

minimize
z̄

||ADz̄ + Ad − a||2

subject to BDz̄ ≤ b − Bd[
J 0

Mu −J>u

][
v̇

f

]
=

[
−J̇v
−hu

]

Removed nva variables and nva equality constraints!

23

Reformulating Optimization Problem

Original problem:

minimize
z

||Az − a||2

subject to Bz ≤ b J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha


Use z = Dz̄ + d to reformulate as [2]:

minimize
z̄

||ADz̄ + Ad − a||2

subject to BDz̄ ≤ b − Bd[
J 0

Mu −J>u

][
v̇

f

]
=

[
−J̇v
−hu

]

Removed nva variables and nva equality constraints!

23

Reformulating Optimization Problem

Original problem:

minimize
z

||Az − a||2

subject to Bz ≤ b J 0 0

Mu −J>u −0

Ma −J>a −I


v̇f
τ

 =

−J̇v−hu
−ha


Use z = Dz̄ + d to reformulate as [2]:

minimize
z̄

||ADz̄ + Ad − a||2

subject to BDz̄ ≤ b − Bd[
J 0

Mu −J>u

][
v̇

f

]
=

[
−J̇v
−hu

]

Removed nva variables and nva equality constraints!
23

Reformulating Optimization Problem: Can We Do Better?

Can improve more?

Yes:

• for floating-base, remove first 6 variables of v̇ exploiting structure of

first 6 columns of Mu

• remove (either all [3, 4] or some [1]) force variables by projecting

dynamics in null space of J

BUT these tricks either limit expressiveness, or lead to small

improvements (while making software more complex).

My opinion: not worth it!

24

Reformulating Optimization Problem: Can We Do Better?

Can improve more?

Yes:

• for floating-base, remove first 6 variables of v̇ exploiting structure of

first 6 columns of Mu

• remove (either all [3, 4] or some [1]) force variables by projecting

dynamics in null space of J

BUT these tricks either limit expressiveness, or lead to small

improvements (while making software more complex).

My opinion: not worth it!

24

Reformulating Optimization Problem: Can We Do Better?

Can improve more?

Yes:

• for floating-base, remove first 6 variables of v̇ exploiting structure of

first 6 columns of Mu

• remove (either all [3, 4] or some [1]) force variables by projecting

dynamics in null space of J

BUT these tricks either limit expressiveness, or lead to small

improvements (while making software more complex).

My opinion: not worth it!

24

Reformulating Optimization Problem: Can We Do Better?

Can improve more?

Yes:

• for floating-base, remove first 6 variables of v̇ exploiting structure of

first 6 columns of Mu

• remove (either all [3, 4] or some [1]) force variables by projecting

dynamics in null space of J

BUT these tricks either limit expressiveness, or lead to small

improvements (while making software more complex).

My opinion: not worth it!

24

From Euclidian Spaces to Lie Groups

So far y(x , u) ∈ Rm.

What if y(x , u) ∈ SE (3)? (very common in practice)

SOLUTION Represent SE(3) elements using homogeneous matrices

y ∈ R4×4 and redefine error function:

e(q, t) = log(y∗(t)−1y(q)),

where log , inverse operation of matrix exponential (i.e. exponential

map): transforms displacement into twist.

25

From Euclidian Spaces to Lie Groups

So far y(x , u) ∈ Rm.

What if y(x , u) ∈ SE (3)? (very common in practice)

SOLUTION Represent SE(3) elements using homogeneous matrices

y ∈ R4×4 and redefine error function:

e(q, t) = log(y∗(t)−1y(q)),

where log , inverse operation of matrix exponential (i.e. exponential

map): transforms displacement into twist.

25

From Euclidian Spaces to Lie Groups

So far y(x , u) ∈ Rm.

What if y(x , u) ∈ SE (3)? (very common in practice)

SOLUTION Represent SE(3) elements using homogeneous matrices

y ∈ R4×4 and redefine error function:

e(q, t) = log(y∗(t)−1y(q)),

where log , inverse operation of matrix exponential (i.e. exponential

map): transforms displacement into twist.

25

References i

A. Del Prete, N. Mansard, F. Nori, G. Metta, and L. Natale.

Partial Force Control of Constrained Floating-Base Robots.

In Intelligent Robots and Systems (IROS 2014), IEEE International

Conference on, 2014.

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and

L. Righetti.

Momentum control with hierarchical inverse dynamics on a

torque-controlled humanoid.

Autonomous Robots, 40(3):473–491, 2016.

M. Mistry, J. Buchli, and S. Schaal.

Inverse dynamics control of floating base systems using

orthogonal decomposition.

2010 IEEE International Conference on Robotics and Automation,

(3):3406–3412, may 2010.

26

References ii

L. Righetti, J. Buchli, M. Mistry, and S. Schaal.

Inverse dynamics control of floating-base robots with external

constraints: A unified view.

2011 IEEE International Conference on Robotics and Automation,

pages 1085–1090, may 2011.

27

	From Joint Space to Task Space Control
	Task Models
	Under-actuation and contacts
	Underactuation

	Multi-Task Control
	Computational Aspects

