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Introduction



Key Concepts

Task

• Motion

• Force

• Actuation

Rigid Contact

• similar to Task, but

• associated to reaction forces

Inverse Dynamics Formulation

• collects Tasks and

RigidContacts

• translates them into HQP

HQP Solver

• solves a HQP
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Other Concepts

Constraint

• affine function

• purely mathematical

• used to represent HQP

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Trajectory

• maps time to vector values

• pos, vel, acc

• position and velocity can have

different sizes (Lie groups)
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Details



ConstraintBase

• A linear (affine) function

• Purely mathematical object

• “Unaware” of what the function represents

Three kinds of constraints:

• Equalities, represented by matrix A and vector a:

Ax = a

• Inequalities, represented by matrix A and vectors lb and ub:

lb ≤ Ax ≤ ub

• Bounds, represented by vectors lb and ub:

lb ≤ x ≤ ub
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ConstraintBase

ConstraintBase(string name, int rows, int cols);

bool isEquality();

bool isInequality();

bool isBound();

Matrix matrix();

Vector vector();

Vector lowerBound();

Vector upperBound();

bool setMatrix(Matrix A);

bool setVector(Vector b);

bool setLowerBound(Vector lb);

bool setUpperBound(Vector ub);

bool checkConstraint(Vector x);
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TaskBase

Interface of TaskBase:

TaskBase(string name, Model model);

Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

• TaskMotion: linear function of robot accelerations

• TaskContactForce: linear function of contact forces

• TaskActuation: linear function of joint torques

Tasks can compute either:

• equality constraints, e.g., TaskComEquality, TaskJointPosture,

TaskSE3Equality

• bounds, e.g., TaskJointBounds

• inequality constraints, e.g., friction cones
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ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight);

ConstraintBase computeMotionTask(t, q, v, data);

InequalityConstraint computeForceTask(t, q, v, data);

ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Motion task:

• represents motion constraint caused by rigid contact

• Jv̇ = −J̇v −Kpe − Kd ė

Force task:

• represents inequality constraints acting on contact forces

• e.g., friction cone constraints

• Af ≤ a
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Contact6d

• unilateral plane contact → 6d motion constraint

• minimal force representation → 6d (3d force + 3d moment)

PROBLEM

• hard to write friction constraints with 6d representation (especially

for non-rectangular shapes)

• easy to write friction constraints if force represented as collection of

3d forces applied at vertices of contact surface

• redundant representation, e.g., 4-vertex surface → 12 variables

• redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION

• use 6d representation for motion constraint Jv̇ = −J̇v ∈ R6

• but 12d representation for force variable f ∈ R12

• force-generator matrix T ∈ R6×12 defines mapping between two

representations: τcontact = J>Tf
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InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

addForceTask(ForceTask task, double weight, int priority);

addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:

addRigidContact(RigidContact contact);

Methods to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData
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Python Example



Ex 1 UR5

• Robot manipulator

• end-effector control

• torque limits

• joint velocity limits
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Ex 1

• Biped robot with both feet on the ground (double support)

• Control center of mass (CoM) for balance

• Control joint angles (posture) for whole-body stability

• Good starting point before moving to more complex scenarios
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Create Robot Wrapper

import pinocchio as se3

from tsid import RobotWrapper, ...

...

robot = RobotWrapper(urdf, vec, se3.JointModelFreeFlyer(),

False)

13



Create Inverse Dynamics Formulation

invdyn = InverseDynamicsFormulationAccForce("tsid", robot,

False)

q = ...

v = ...

invdyn.computeProblemData(t, q, v)

14



Create Contact

contactRF = Contact6d("contact_rfoot", robot, rf_frame_name,

contact_points, contact_normal, mu,

fMin, fMax, w_forceReg)

contactRF.setKp(...)

contactRF.setKd(...)

H_rf_ref = ...

contactRF.setReference(H_rf_ref)

invdyn.addRigidContact(contactRF)

# repeat for other contact(s)

15



Create Center-of-Mass Task

comTask = TaskComEquality("task-com", robot)

comTask.setKp(...)

comTask.setKd(...)

invdyn.addMotionTask(comTask, w_com, 1, 0.0)
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Create Posture Task

postureTask = TaskJointPosture("task-posture", robot)

postureTask.setKp(...)

postureTask.setKd(...)

invdyn.addMotionTask(postureTask, w_posture, 1, 0.0)
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Create Reference Task Trajectories

com_ref = robot.com(data)

trajCom = TrajectoryEuclidianConstant("traj_com", com_ref)

q_ref = q[7:]

trajPosture = TrajectoryEuclidianConstant("traj_joint", q_ref)

18



Create HQP Solver

solver = SolverHQuadProg("qp solver")

solver.resize(invdyn.nVar, invdyn.nEq, invdyn.nIn)

19



Control Loop

for i in range(0, N_SIMULATION_STEPS):

comTask.setReference(trajCom.computeNext())

postureTask.setReference(trajPosture.computeNext())

# get current state estimation

(q, v) = ...

HQPData = invdyn.computeProblemData(t, q, v)

sol = solver.solve(HQPData)

tau = invdyn.getActuatorForces(sol)

# send desired joint torques (tau) to actuators

...

20



Simulation Loop

for i in range(0, N_SIMULATION_STEPS):

...

# assuming perfect torque-acceleration tracking...

dv = invdyn.getAccelerations(sol)

# integrate desired accelerations

q = se3.integrate(robot.model(), q, dt*v)

v += dt*dv

# increase time

t += dt

21



Exercises



Exercise 2: CoM Sinusoidal Tracking

Run provided code (orc/tsid/ex 2 biped.py) and check the sinusoidal

reference CoM tracking

• Change CoM/posture gains and see effect

• Change CoM/posture weights and see effect

• Set reference CoM outside support polygon (e.g., 20 cm to the

side), what happens? Why?

• Increase CoM frequency until tracking gets bad. Why does that

happen?

• Add contact on hand

22
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Exercise 3: Balancing

Run provided code (orc/tsid/ex 3 biped balance with gui.py)

• Move reference CoM position

• Push robot and check reaction

• Move CoM over left foot

• Break contact with right foot

• Move reference right foot

23
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