
Trajectory Optimization for Walking

Optimization-based Robot Control

Andrea Del Prete

University of Trento, 2023

Introduction

Task-Space Inverse Dynamics needs reference trajectories.

How to compute them for a walking robot?

1

Table of contents

1. Limits of Instantaneous Control

2. Linear Inverted Pendulum Model (LIPM)

3. Center of Mass Trajectory Optimization with LIPM

4. Foot-step Planning

5. Implementation in Python

6. Connection with TSID

2

Limits of Instantaneous Control

Limits of TSID

TSID is good for tracking trajectories, but...

...no notion of future state!

Hard to anticipate constraint violations (e.g., joint limits).

Example of car moving towards wall.

3

Limits of TSID

TSID is good for tracking trajectories, but...

...no notion of future state!

Hard to anticipate constraint violations (e.g., joint limits).

Example of car moving towards wall.

3

Limits of TSID

TSID is good for tracking trajectories, but...

...no notion of future state!

Hard to anticipate constraint violations (e.g., joint limits).

Example of car moving towards wall.

3

Limits of TSID

TSID is good for tracking trajectories, but...

...no notion of future state!

Hard to anticipate constraint violations (e.g., joint limits).

Example of car moving towards wall.

3

Need for Trajectory Optimization

Trajectory Optimization ≈ TSID with preview horizon.

PROS: Account for future constraints/cost in current decisions.

CONS: More computationally expensive.

Solution
Use traj-opt offline to compute reference trajectory.

Use TSID online to track reference trajectory.

4

Need for Trajectory Optimization

Trajectory Optimization ≈ TSID with preview horizon.

PROS: Account for future constraints/cost in current decisions.

CONS: More computationally expensive.

Solution
Use traj-opt offline to compute reference trajectory.

Use TSID online to track reference trajectory.

4

Need for Trajectory Optimization

Trajectory Optimization ≈ TSID with preview horizon.

PROS: Account for future constraints/cost in current decisions.

CONS: More computationally expensive.

Solution
Use traj-opt offline to compute reference trajectory.

Use TSID online to track reference trajectory.

4

Need for Trajectory Optimization

Trajectory Optimization ≈ TSID with preview horizon.

PROS: Account for future constraints/cost in current decisions.

CONS: More computationally expensive.

Solution
Use traj-opt offline to compute reference trajectory.

Use TSID online to track reference trajectory.

4

Trajectory Optimization through Contacts

Traj-opt for locomotion/manipulation is really hard!

Option 1: Rigid Contacts
Hybrid dynamical system → Nonsmooth optimization problem!

Option 2: Soft (but stiff) Contacts
Stiff differential equations → Veeeery slow!

Solution
Use rigid contacts, but fix contact sequence → Time-varying dynamical

system (not hybrid!)

5

Trajectory Optimization through Contacts

Traj-opt for locomotion/manipulation is really hard!

Option 1: Rigid Contacts
Hybrid dynamical system → Nonsmooth optimization problem!

Option 2: Soft (but stiff) Contacts
Stiff differential equations → Veeeery slow!

Solution
Use rigid contacts, but fix contact sequence → Time-varying dynamical

system (not hybrid!)

5

Trajectory Optimization through Contacts

Traj-opt for locomotion/manipulation is really hard!

Option 1: Rigid Contacts
Hybrid dynamical system → Nonsmooth optimization problem!

Option 2: Soft (but stiff) Contacts
Stiff differential equations → Veeeery slow!

Solution
Use rigid contacts, but fix contact sequence → Time-varying dynamical

system (not hybrid!)

5

Trajectory Optimization through Contacts

Traj-opt for locomotion/manipulation is really hard!

Option 1: Rigid Contacts
Hybrid dynamical system → Nonsmooth optimization problem!

Option 2: Soft (but stiff) Contacts
Stiff differential equations → Veeeery slow!

Solution
Use rigid contacts, but fix contact sequence → Time-varying dynamical

system (not hybrid!)

5

Trajectory Optimization for locomotion

Even with fixed contacts, traj-opt is hard because high-dimensional.

Use simplified models to speed it up.

Potential use as Model Predictive Control.

Common models for locomotion:

• Inverted Pendulum

• Linear Inverted Pendulum

• Centroidal Dynamics (i.e. single rigid body dynamics)

6

Trajectory Optimization for locomotion

Even with fixed contacts, traj-opt is hard because high-dimensional.

Use simplified models to speed it up.

Potential use as Model Predictive Control.

Common models for locomotion:

• Inverted Pendulum

• Linear Inverted Pendulum

• Centroidal Dynamics (i.e. single rigid body dynamics)

6

Trajectory Optimization for locomotion

Even with fixed contacts, traj-opt is hard because high-dimensional.

Use simplified models to speed it up.

Potential use as Model Predictive Control.

Common models for locomotion:

• Inverted Pendulum

• Linear Inverted Pendulum

• Centroidal Dynamics (i.e. single rigid body dynamics)

6

Trajectory Optimization for locomotion

Even with fixed contacts, traj-opt is hard because high-dimensional.

Use simplified models to speed it up.

Potential use as Model Predictive Control.

Common models for locomotion:

• Inverted Pendulum

• Linear Inverted Pendulum

• Centroidal Dynamics (i.e. single rigid body dynamics)

6

Linear Inverted Pendulum Model

(LIPM)

Center of Mass and Angular Momentum

Newton equation (center-of-mass dynamics):

m(c̈ + g) =
∑

i

fi (1)

Euler equation (angular-momentum dynamics):

l̇ =
∑

i

(pi − c)× fi (2)

where:

• c : center of mass (CoM)

• l : angular momentum (expressed at CoM)

• m: robot mass

• g : gravity acceleration

• fi : i-th contact force

• pi : i-th contact point

7

Center of Mass and Angular Momentum

Newton equation (center-of-mass dynamics):

m(c̈ + g) =
∑

i

fi (1)

Euler equation (angular-momentum dynamics):

l̇ =
∑

i

(pi − c)× fi (2)

where:

• c : center of mass (CoM)

• l : angular momentum (expressed at CoM)

• m: robot mass

• g : gravity acceleration

• fi : i-th contact force

• pi : i-th contact point

7

Center of Mass and Angular Momentum

Newton equation (center-of-mass dynamics):

m(c̈ + g) =
∑

i

fi (1)

Euler equation (angular-momentum dynamics):

l̇ =
∑

i

(pi − c)× fi (2)

where:

• c : center of mass (CoM)

• l : angular momentum (expressed at CoM)

• m: robot mass

• g : gravity acceleration

• fi : i-th contact force

• pi : i-th contact point

7

Flat Ground (1/2)

Assume:

• contacts with flat ground: pz
i = 0

• constant angular momentum: l̇ = 0

• constant CoM height: ċz = c̈z = 0

Then we get (Wieber, Tedrake, and Kuindersma 2015):

cxy − cz

g z
c̈xy =

∑
i f

z
i p

xy
i∑

i f
z

i︸ ︷︷ ︸
Center of Pressure

(3)

f z
i ≥ 0 ⇐= zxy ,

∑
i f z

i pxy
i∑

i f z
i
∈ conv(pxy

i)

8

Flat Ground (1/2)

Assume:

• contacts with flat ground: pz
i = 0

• constant angular momentum: l̇ = 0

• constant CoM height: ċz = c̈z = 0

Then we get (Wieber, Tedrake, and Kuindersma 2015):

cxy − cz

g z
c̈xy =

∑
i f

z
i p

xy
i∑

i f
z

i︸ ︷︷ ︸
Center of Pressure

(3)

f z
i ≥ 0 ⇐= zxy ,

∑
i f z

i pxy
i∑

i f z
i
∈ conv(pxy

i)

8

Flat Ground (1/2)

Assume:

• contacts with flat ground: pz
i = 0

• constant angular momentum: l̇ = 0

• constant CoM height: ċz = c̈z = 0

Then we get (Wieber, Tedrake, and Kuindersma 2015):

cxy − cz

g z
c̈xy =

∑
i f

z
i p

xy
i∑

i f
z

i︸ ︷︷ ︸
Center of Pressure

(3)

f z
i ≥ 0

⇐= zxy ,
∑

i f z
i pxy

i∑
i f z

i
∈ conv(pxy

i)

8

Flat Ground (1/2)

Assume:

• contacts with flat ground: pz
i = 0

• constant angular momentum: l̇ = 0

• constant CoM height: ċz = c̈z = 0

Then we get (Wieber, Tedrake, and Kuindersma 2015):

cxy − cz

g z
c̈xy =

∑
i f

z
i p

xy
i∑

i f
z

i︸ ︷︷ ︸
Center of Pressure

(3)

f z
i ≥ 0 ⇐= zxy ,

∑
i f z

i pxy
i∑

i f z
i
∈ conv(pxy

i)

8

Flat Ground (2/2)

Rearrange (3) as:

c̈xy =
g z

cz
(cxy − zxy) (4)

Interpretation
CoM acc c̈xy given by force pushing CoM cxy away from CoP zxy →
UNSTABLE!

Same dynamics as linearized Inverted Pendulum.

9

Flat Ground (2/2)

Rearrange (3) as:

c̈xy =
g z

cz
(cxy − zxy) (4)

Interpretation
CoM acc c̈xy given by force pushing CoM cxy away from CoP zxy

→
UNSTABLE!

Same dynamics as linearized Inverted Pendulum.

9

Flat Ground (2/2)

Rearrange (3) as:

c̈xy =
g z

cz
(cxy − zxy) (4)

Interpretation
CoM acc c̈xy given by force pushing CoM cxy away from CoP zxy →
UNSTABLE!

Same dynamics as linearized Inverted Pendulum.

9

Flat Ground (2/2)

Rearrange (3) as:

c̈xy =
g z

cz
(cxy − zxy) (4)

Interpretation
CoM acc c̈xy given by force pushing CoM cxy away from CoP zxy →
UNSTABLE!

Same dynamics as linearized Inverted Pendulum.

9

LIPM as Linear Dynamical System

Rewrite (3) as: [
ċxy

c̈xy

]
︸ ︷︷ ︸

ẋ

=

[
0 I

ω2 0

][
cxy

ċxy

]
︸ ︷︷ ︸

x

+

[
0

−ω2

]
zxy︸︷︷︸

u
(5)

where ω2 , g z

cz .

Discretize with time step δt:

x+ =

[
cosh(ωδt) ω−1 sinh(ωδt)

ω sinh(ωδt) cosh(ωδt)

]
︸ ︷︷ ︸

A

x +

[
1− cosh(ωδt)

−ω sinh(ωδt)

]
︸ ︷︷ ︸

B

u
(6)

10

LIPM as Linear Dynamical System

Rewrite (3) as: [
ċxy

c̈xy

]
︸ ︷︷ ︸

ẋ

=

[
0 I

ω2 0

][
cxy

ċxy

]
︸ ︷︷ ︸

x

+

[
0

−ω2

]
zxy︸︷︷︸

u
(5)

where ω2 , g z

cz .

Discretize with time step δt:

x+ =

[
cosh(ωδt) ω−1 sinh(ωδt)

ω sinh(ωδt) cosh(ωδt)

]
︸ ︷︷ ︸

A

x +

[
1− cosh(ωδt)

−ω sinh(ωδt)

]
︸ ︷︷ ︸

B

u
(6)

10

Center of Mass Trajectory

Optimization with LIPM

Key Idea

Follow reference trajectory of:

• CoP P =
[
p0 . . . pN−1

]
(i.e. foot steps),

• CoM position C ref =
[
c ref
0 . . . c ref

N

]
• CoM velocity Ċ ref =

[
ċ ref
0 . . . ċ ref

N

]

Foot steps and timing P predefined by user.

Keep CoP close to foot center for robustness.

C ref could be straight line.

11

Key Idea

Follow reference trajectory of:

• CoP P =
[
p0 . . . pN−1

]
(i.e. foot steps),

• CoM position C ref =
[
c ref
0 . . . c ref

N

]
• CoM velocity Ċ ref =

[
ċ ref
0 . . . ċ ref

N

]
Foot steps and timing P predefined by user.

Keep CoP close to foot center for robustness.

C ref could be straight line.

11

Key Idea

Follow reference trajectory of:

• CoP P =
[
p0 . . . pN−1

]
(i.e. foot steps),

• CoM position C ref =
[
c ref
0 . . . c ref

N

]
• CoM velocity Ċ ref =

[
ċ ref
0 . . . ċ ref

N

]
Foot steps and timing P predefined by user.

Keep CoP close to foot center for robustness.

C ref could be straight line.

11

Key Idea

Follow reference trajectory of:

• CoP P =
[
p0 . . . pN−1

]
(i.e. foot steps),

• CoM position C ref =
[
c ref
0 . . . c ref

N

]
• CoM velocity Ċ ref =

[
ċ ref
0 . . . ċ ref

N

]
Foot steps and timing P predefined by user.

Keep CoP close to foot center for robustness.

C ref could be straight line.

11

Formulation

minimize
C ,Ċ ,U

∑
k

β

2
||ck − c ref

k ||2 +
γ

2
||ċ − ċ ref ||2+

α

2
||uk − pk ||2

subject to pk −
s

2
≤ uk ≤ pk +

s

2
k = 0 . . .N − 1

xk+1 = Axk + Buk k = 0 . . .N − 1

x0 = xinitial

xN = xfinal

(7)

where:

• s ∈ R2 = foot size in x and y directions

• C =
[
c0 . . . cN

]
• Ċ =

[
ċ0 . . . ċN

]
• xk = (ck , ċk)

• α, β, γ = user-defined weights

12

Foot-step Planning

Key Idea

Optimize for foot step positions, but...

...foot step timing remains fixed.

Add P to decision variables → Problem remains QP! (Herdt et al. 2010)

Bound distance between successive foot steps.

13

Key Idea

Optimize for foot step positions, but...

...foot step timing remains fixed.

Add P to decision variables → Problem remains QP! (Herdt et al. 2010)

Bound distance between successive foot steps.

13

Key Idea

Optimize for foot step positions, but...

...foot step timing remains fixed.

Add P to decision variables → Problem remains QP! (Herdt et al. 2010)

Bound distance between successive foot steps.

13

Key Idea

Optimize for foot step positions, but...

...foot step timing remains fixed.

Add P to decision variables → Problem remains QP! (Herdt et al. 2010)

Bound distance between successive foot steps.

13

CoM Trajectory Optimization with Foot-Step Planning

minimize
C ,Ċ ,U,P

∑
k

β

2
||ck − c ref

k ||2 +
γ

2
||ċ − ċ ref ||2+

α

2
||uk − pk ||2

subject to pk −
s

2
≤ uk ≤ pk +

s

2
k = 0 . . .N − 1

xk+1 = Axk + Buk k = 0 . . .N − 1

x0 = xinitial

xN = xfinal

pk+1 − pk ∈ Pk k = 0 . . .N − 1

(8)

14

Implementation in Python

Code

Inverted pendulum parameters:

foot_length = conf.lxn + conf.lxp # foot size in x direction

foot_width = conf.lyn + conf.lyp # foot size in y direciton

nb_dt_per_step = int(conf.T_step/conf.dt_mpc)

N = conf.nb_steps * nb_dt_per_step # nb of time steps

15

Code

CoM initial state: [x_0, xdot_0].T

[y_0, ydot_0].T

x_0 = np.array([conf.foot_step_0[0], 0.0])

y_0 = np.array([conf.foot_step_0[1], 0.0])

16

Code

compute foot steps

foot_steps = manual_foot_placement(conf.foot_step_0,

conf.step_length, conf.nb_steps)

foot_steps[1:,0] -= conf.step_length

Figure 1: Foot steps.

17

Code

compute foot steps

foot_steps = manual_foot_placement(conf.foot_step_0,

conf.step_length, conf.nb_steps)

foot_steps[1:,0] -= conf.step_length

Figure 1: Foot steps.
17

Code

compute CoP reference trajectory:

cop_ref = create_CoP_trajectory(conf.nb_steps,

foot_steps, N, nb_dt_per_step)

Figure 2: Foot steps and CoP.

18

Code

compute CoP reference trajectory:

cop_ref = create_CoP_trajectory(conf.nb_steps,

foot_steps, N, nb_dt_per_step)

Figure 2: Foot steps and CoP.

18

Open script

cd orc/lipm

python3 lipm_ocp.py

19

Connection with TSID

LIPM to Whole-Body Model

Two issues:

1. Different time steps

2. Foot trajectories

20

Interpolation

Input: CoM (pos, vel) and CoP trajectories with traj-opt (large) time

step.

Output: CoM (pos, vel, acc) with control (small) time step.

Compute pos-vel with:[
c

ċ

]+

=

[
cosh(ωδt) ω−1 sinh(ωδt)

ω sinh(ωδt) cosh(ωδt)

][
c

ċ

]
+

[
1− cosh(ωδt)

−ω sinh(ωδt)

]
u (9)

Compute acc with:

c̈ =
g z

cz
(c − z) (10)

21

Interpolation

Input: CoM (pos, vel) and CoP trajectories with traj-opt (large) time

step.

Output: CoM (pos, vel, acc) with control (small) time step.

Compute pos-vel with:[
c

ċ

]+

=

[
cosh(ωδt) ω−1 sinh(ωδt)

ω sinh(ωδt) cosh(ωδt)

][
c

ċ

]
+

[
1− cosh(ωδt)

−ω sinh(ωδt)

]
u (9)

Compute acc with:

c̈ =
g z

cz
(c − z) (10)

21

Interpolation

Input: CoM (pos, vel) and CoP trajectories with traj-opt (large) time

step.

Output: CoM (pos, vel, acc) with control (small) time step.

Compute pos-vel with:[
c

ċ

]+

=

[
cosh(ωδt) ω−1 sinh(ωδt)

ω sinh(ωδt) cosh(ωδt)

][
c

ċ

]
+

[
1− cosh(ωδt)

−ω sinh(ωδt)

]
u (9)

Compute acc with:

c̈ =
g z

cz
(c − z) (10)

21

Foot Trajectories

Common choice: polynomials.

For instance: 3rd order with constraints:

• initial pos

• initial vel (zero)

• final pos

• final vel (zero)

Use higher order if you wanna add constraints (e.g., zero initial/final acc).

22

Foot Trajectories

Common choice: polynomials.

For instance: 3rd order with constraints:

• initial pos

• initial vel (zero)

• final pos

• final vel (zero)

Use higher order if you wanna add constraints (e.g., zero initial/final acc).

22

Foot Trajectories

Common choice: polynomials.

For instance: 3rd order with constraints:

• initial pos

• initial vel (zero)

• final pos

• final vel (zero)

Use higher order if you wanna add constraints (e.g., zero initial/final acc).

22

Run script

cd orc/lipm

python lipm_to_tsid.py

cd orc/reactive_control/tsid

python ex_4_walking.py

23

References

Herdt, Andrei et al. (2010). “Online Walking Motion Generation with

Automatic Foot Step Placement”. In: Advanced Robotics 24.5-6.

Wieber, Pierre-Brice, Russ Tedrake, and Scott Kuindersma (2015).

“Modeling and Control of Legged Robots”. In: Springer Handbook of

Robotics. Ed. by Bruno Siciliano and Khatib Oussama. 2nd. Chap. 48.

23

	Limits of Instantaneous Control
	Linear Inverted Pendulum Model (LIPM)
	Center of Mass Trajectory Optimization with LIPM
	Foot-step Planning
	Implementation in Python
	Connection with TSID
	References

